Skip to content

Commit

Permalink
Create Program.c
Browse files Browse the repository at this point in the history
  • Loading branch information
alo7lika authored Oct 30, 2024
1 parent f303d05 commit fd7335b
Showing 1 changed file with 81 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define TRAJECTORY_LENGTH 100
#define NUM_TRAJECTORIES 10
#define CLIP_EPSILON 0.2
#define LEARNING_RATE 0.001
#define GAMMA 0.99
#define LAMBDA 0.95

// Placeholder functions for the neural network
double policy(double state) {
// Simple placeholder function for policy
return state * 0.1;
}

double value_function(double state) {
// Simple placeholder function for value function
return state * 0.5;
}

// Calculate advantage function using Generalized Advantage Estimation (GAE)
double calculate_advantage(double rewards[], double values[], int t) {
double advantage = 0.0;
double discount = 1.0;
for (int k = t; k < TRAJECTORY_LENGTH; ++k) {
advantage += discount * (rewards[k] + GAMMA * values[k + 1] - values[k]);
discount *= GAMMA * LAMBDA;
}
return advantage;
}

// Policy update with clipping
double clipped_objective(double ratio, double advantage) {
double clip_value = fmax(1 - CLIP_EPSILON, fmin(1 + CLIP_EPSILON, ratio));
return fmin(ratio * advantage, clip_value * advantage);
}

// Main PPO loop
void PPO() {
double states[TRAJECTORY_LENGTH];
double actions[TRAJECTORY_LENGTH];
double rewards[TRAJECTORY_LENGTH];
double values[TRAJECTORY_LENGTH];
double advantages[TRAJECTORY_LENGTH];
double returns[TRAJECTORY_LENGTH];

for (int episode = 0; episode < NUM_TRAJECTORIES; ++episode) {
// Simulate data collection
for (int t = 0; t < TRAJECTORY_LENGTH; ++t) {
states[t] = (double)t; // Placeholder state
actions[t] = policy(states[t]); // Take action according to policy
rewards[t] = -fabs(actions[t]); // Placeholder reward function
values[t] = value_function(states[t]);
}

// Calculate returns and advantages
for (int t = 0; t < TRAJECTORY_LENGTH; ++t) {
returns[t] = rewards[t] + GAMMA * values[t + 1];
advantages[t] = calculate_advantage(rewards, values, t);
}

// Update policy using clipped objective
for (int t = 0; t < TRAJECTORY_LENGTH; ++t) {
double old_policy = policy(states[t]);
double ratio = policy(states[t]) / old_policy; // Placeholder policy ratio
double objective = clipped_objective(ratio, advantages[t]);

// Simple gradient update (mock update, as no neural network here)
// In practice, we would use neural network gradients
double policy_update = LEARNING_RATE * objective;
printf("Policy updated for state %f with value %f\n", states[t], policy_update);
}
}
}

int main() {
PPO();
return 0;
}

0 comments on commit fd7335b

Please sign in to comment.