-
Notifications
You must be signed in to change notification settings - Fork 302
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
81 additions
and
0 deletions.
There are no files selected for viewing
81 changes: 81 additions & 0 deletions
81
Machine_Learning_Algorithms/Proximal Policy Optimization (PPO)Algorithm /Program.c
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
#include <stdio.h> | ||
#include <stdlib.h> | ||
#include <math.h> | ||
|
||
#define TRAJECTORY_LENGTH 100 | ||
#define NUM_TRAJECTORIES 10 | ||
#define CLIP_EPSILON 0.2 | ||
#define LEARNING_RATE 0.001 | ||
#define GAMMA 0.99 | ||
#define LAMBDA 0.95 | ||
|
||
// Placeholder functions for the neural network | ||
double policy(double state) { | ||
// Simple placeholder function for policy | ||
return state * 0.1; | ||
} | ||
|
||
double value_function(double state) { | ||
// Simple placeholder function for value function | ||
return state * 0.5; | ||
} | ||
|
||
// Calculate advantage function using Generalized Advantage Estimation (GAE) | ||
double calculate_advantage(double rewards[], double values[], int t) { | ||
double advantage = 0.0; | ||
double discount = 1.0; | ||
for (int k = t; k < TRAJECTORY_LENGTH; ++k) { | ||
advantage += discount * (rewards[k] + GAMMA * values[k + 1] - values[k]); | ||
discount *= GAMMA * LAMBDA; | ||
} | ||
return advantage; | ||
} | ||
|
||
// Policy update with clipping | ||
double clipped_objective(double ratio, double advantage) { | ||
double clip_value = fmax(1 - CLIP_EPSILON, fmin(1 + CLIP_EPSILON, ratio)); | ||
return fmin(ratio * advantage, clip_value * advantage); | ||
} | ||
|
||
// Main PPO loop | ||
void PPO() { | ||
double states[TRAJECTORY_LENGTH]; | ||
double actions[TRAJECTORY_LENGTH]; | ||
double rewards[TRAJECTORY_LENGTH]; | ||
double values[TRAJECTORY_LENGTH]; | ||
double advantages[TRAJECTORY_LENGTH]; | ||
double returns[TRAJECTORY_LENGTH]; | ||
|
||
for (int episode = 0; episode < NUM_TRAJECTORIES; ++episode) { | ||
// Simulate data collection | ||
for (int t = 0; t < TRAJECTORY_LENGTH; ++t) { | ||
states[t] = (double)t; // Placeholder state | ||
actions[t] = policy(states[t]); // Take action according to policy | ||
rewards[t] = -fabs(actions[t]); // Placeholder reward function | ||
values[t] = value_function(states[t]); | ||
} | ||
|
||
// Calculate returns and advantages | ||
for (int t = 0; t < TRAJECTORY_LENGTH; ++t) { | ||
returns[t] = rewards[t] + GAMMA * values[t + 1]; | ||
advantages[t] = calculate_advantage(rewards, values, t); | ||
} | ||
|
||
// Update policy using clipped objective | ||
for (int t = 0; t < TRAJECTORY_LENGTH; ++t) { | ||
double old_policy = policy(states[t]); | ||
double ratio = policy(states[t]) / old_policy; // Placeholder policy ratio | ||
double objective = clipped_objective(ratio, advantages[t]); | ||
|
||
// Simple gradient update (mock update, as no neural network here) | ||
// In practice, we would use neural network gradients | ||
double policy_update = LEARNING_RATE * objective; | ||
printf("Policy updated for state %f with value %f\n", states[t], policy_update); | ||
} | ||
} | ||
} | ||
|
||
int main() { | ||
PPO(); | ||
return 0; | ||
} |