Authors: Liyang Liu, Zihan Wang, Minh Hieu Phan, Bowen Zhang, Jinchao Ge, Yifan Liu*.
*Corresponding author
[Paper] [Paper Fast Mirror] [Project] [Github] [Docker] [Pretrained models] [Visualization]
Abstract: Current approaches for knowledge distillation in semantic segmentation tend to adopt a holistic approach that treats all spatial locations equally. However, for dense prediction tasks, it is crucial to consider the knowledge representation for different spatial locations in a different manner. Furthermore, edge regions between adjacent categories are highly uncertain due to context information leakage, which is particularly pronounced for compact networks. To address this challenge, this paper proposes a novel approach called boundary-privileged knowledge distillation (BPKD). BPKD distills the knowledge of the teacher model's body and edges separately from the compact student model. Specifically, we employ two distinct loss functions: 1) Edge Loss, which aims to distinguish between ambiguous classes at the pixel level in edge regions. 2) Body Loss, which utilizes shape constraints and selectively attends to the inner-semantic regions. Our experiments demonstrate that the proposed BPKD method provides extensive refinements and aggregation for edge and body regions. Additionally, the method achieves state-of-the-art distillation performance for semantic segmentation on three popular benchmark datasets, highlighting its effectiveness and generalization ability. BPKD shows consistent improvements over various lightweight semantic segmentation structures.
-
25 Oct 2023
: Our Paper Accept by WACV 2024, we will refactor and release the training code after CVPR DDL, stay tuned. -
18 Jul 2023
: Release evaluation code and weights for Pascal Context dataset. -
17 Jul 2023
: Release evaluation code and weights for ADE20K dataset. -
16 Jul 2023
: Release evaluation code and weights for Cityscape dataset.
mmrazor@8b57a07b5e6033dbd0052aeaf0f72668bdaecd00
mmseg==0.26.0
mmcv-full==1.6.0
Checkout requirements.txt for full requirements
Docker Image :
sudo docker run --gpus all -v ~/data:/data \
-e GITHUB_TOKEN="xxxx" \
-e WANDB_TOKEN="xxxx" \
-it --shm-size=64gb ghcr.io/uaws/pytorch-sshd:ngc-pytorch-1.13-mmcv-1.6.0-mmseg-0.26.0-ubuntu-20.04 /bin/bash
- Cityscapes
- PASCAL Context
- ADE20K
According to MMseg: https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md
python tools/test.py {config.py} {checkpoint.pth} --eval mIoU
We conducted all experiments using 4 NVIDIA A100 GPUs on The University of Adelaide High Performance Computing Cluster (HPC).
Table: Performance on Cityscapes Dataset
Methods | FLOPs(G) | Parameters(M) | mIoU(%) | mAcc(%) | Config | ckpt |
---|---|---|---|---|---|---|
T: PSPNet-R101 | 256.89 | 68.07 | 79.74 | 86.56 | Config | Model |
S: PSPNet-R18 | 54.53 | 12.82 | 74.23 | 81.45 | Config | Model |
SKDS | 54.53 | 12.82 | 76.13 | 82.58 | Config | Model |
IFVD | 54.53 | 12.82 | 76.24 | 82.81 | Config | Model |
CIRKD | 54.53 | 12.82 | 76.03 | 82.56 | Config | Model |
CWD | 54.53 | 12.82 | 76.26 | 83.04 | Config | Model |
BPKD(Ours) | 54.53 | 12.82 | 77.57 | 84.47 | Config | Model |
T: HRNetV2P-W48 | 95.64 | 65.95 | 80.65 | 87.39 | Config | Model |
S: HRNetV2P-W18S | 10.49 | 3.97 | 75.31 | 83.71 | Config | Model |
SKDS | 10.49 | 3.97 | 77.27 | 84.77 | Config | Model |
IFVD | 10.49 | 3.97 | 77.18 | 84.74 | Config | Model |
CIRKD | 10.49 | 3.97 | 77.36 | 84.97 | ||
CWD | 10.49 | 3.97 | 77.87 | 84.98 | Config | Model |
BPKD(Ours) | 10.49 | 3.97 | 78.58 | 85.78 | Config | Model |
T: DeeplabV3P-R101 | 255.67 | 62.68 | 80.98 | 88.7 | Config | Model |
S: DeeplabV3P+MV2 | 69.60 | 15.35 | 75.29 | 83.11 | Config | Model |
SKDS | 69.60 | 15.35 | 76.05 | 84.14 | Config | Model |
IFVD | 69.60 | 15.35 | 76.97 | 84.85 | Config | Model |
CIRKD | 69.60 | 15.35 | 77.71 | 85.33 | Config | Model |
CWD | 69.60 | 15.35 | 77.97 | 86.68 | Config | Model |
BPKD(Ours) | 69.60 | 15.35 | 78.59 | 86.45 | Config | Model |
T: ISANet-R101 | 228.21 | 56.80 | 80.61 | 88.29 | Config | Model |
S: ISANet-R18 | 54.33 | 12.46 | 73.62 | 80.36 | Config | Model |
SKDS | 54.33 | 12.46 | 74.99 | 82.61 | Config | Model |
IFVD | 54.33 | 12.46 | 75.35 | 82.86 | Config | Model |
CIRKD | 54.33 | 12.46 | 75.41 | 82.92 | Config | Model |
CWD | 54.33 | 12.46 | 75.43 | 82.64 | Config | Model |
BPKD(Ours) | 54.33 | 12.46 | 75.72 | 83.65 | Config | Model |
Methods | FLOPs(G) | Parameters(M) | mIoU(%) | mAcc(%) | Config | ckpt |
---|---|---|---|---|---|---|
T: PSPNet-R101 | 256.89 | 68.07 | 44.39 | 54.75 | Config | Model |
S: PSPnet-R18 | 54.53 | 12.82 | 33.30 | 42.58 | Config | Model |
SKDS | 54.53 | 12.82 | 34.49 | 44.28 | Config | Model |
IFVD | 54.53 | 12.82 | 34.54 | 44.26 | Config | Model |
CIRKD | 54.53 | 12.82 | 35.07 | 45.38 | Config | Model |
CWD | 54.53 | 12.82 | 37.02 | 46.33 | Config | Model |
BPKD(Ours) | 54.53 | 12.82 | 38.51 | 47.70 | Config | Model |
T: HRNetV2P-W48 | 95.64 | 65.95 | 42.02 | 53.52 | Config | Model |
S: HRNetV2P-W18S | 10.49 | 3.97 | 31.38 | 41.39 | Config | Model |
SKDS | 10.49 | 3.97 | 32.57 | 43.22 | Config | Model |
IFVD | 10.49 | 3.97 | 32.66 | 43.23 | Config | Model |
CIRKD | 10.49 | 3.97 | 33.06 | 44.30 | Config | Model |
CWD | 10.49 | 3.97 | 34.00 | 42.76 | Config | Model |
BPKD(Ours) | 10.49 | 3.97 | 35.31 | 46.11 | Config | Model |
T:DeeplabV3P-R101 | 255.67 | 62.68 | 45.47 | 56.41 | Config | Model |
S:DeeplabV3P+MV2 | 69.60 | 15.35 | 31.56 | 45.14 | Config | Model |
SKDS | 69.60 | 15.35 | 32.49 | 46.47 | Config | Model |
IFVD | 69.60 | 15.35 | 32.11 | 46.07 | Config | Model |
CIRKD | 69.60 | 15.35 | 32.24 | 46.09 | Config | Model |
CWD | 69.60 | 15.35 | 35.12 | 49.76 | Config | Model |
BPKD(Ours) | 69.60 | 15.35 | 35.49 | 53.84 | Config | Model |
T: ISANet-R101 | 228.21 | 56.80 | 43.80 | 54.39 | Config | Model |
S: ISANet-R18 | 54.33 | 12.46 | 31.15 | 41.21 | Config | Model |
SKDS | 54.33 | 12.46 | 32.16 | 41.80 | Config | Model |
IFVD | 54.33 | 12.46 | 32.78 | 42.61 | Config | Model |
CIRKD | 54.33 | 12.46 | 32.82 | 42.71 | Config | Model |
CWD | 54.33 | 12.46 | 37.56 | 45.79 | Config | Model |
BPKD(Ours) | 54.33 | 12.46 | 38.73 | 47.92 | Config | Model |
Methods | FLOPs(G) | Parameters(M) | mIoU(%) | mAcc(%) | Config | ckpt |
---|---|---|---|---|---|---|
T: PSPNet-R101 | 256.89 | 68.07 | 52.47 | 63.15 | Config | Model |
S:PSPnet-R18 | 54.53 | 12.82 | 43.79 | 54.46 | Config | Model |
SKDS | 54.53 | 12.82 | 45.08 | 55.56 | Config | Model |
IFVD | 54.53 | 12.82 | 45.97 | 56.6 | Config | Model |
CIRKD | 54.53 | 12.82 | 45.62 | 56.15 | Config | Model |
CWD | 54.53 | 12.82 | 45.99 | 55.56 | Config | Model |
BPKD(Ours) | 54.53 | 12.82 | 46.82 | 56.29 | Config | Model |
T: HRNetV2P-W48 | 95.64 | 65.95 | 51.12 | 61.39 | Config | Model |
S:HRNetV2P-W18S | 10.49 | 3.97 | 40.62 | 51.43 | ||
SKDS | 10.49 | 3.97 | 41.54 | 52.18 | Config | Model |
IFVD | 10.49 | 3.97 | 41.55 | 52.24 | Config | Model |
CIRKD | 10.49 | 3.97 | 42.02 | 52.88 | Config | Model |
CWD | 10.49 | 3.97 | 42.89 | 53.37 | Config | Model |
BPKD(Ours) | 10.49 | 3.97 | 43.96 | 54.51 | Config | Model |
T:DeeplabV3P-R101 | 255.67 | 62.68 | 53.20 | 64.04 | Config | Model |
S:DeeplabV3P+MV2 | 69.60 | 15.35 | 41.01 | 52.92 | Config | Model |
SKDS | 69.60 | 15.35 | 42.07 | 55.06 | Config | Model |
IFVD | 69.60 | 15.35 | 41.73 | 54.34 | Config | Model |
CIRKD | 69.60 | 15.35 | 42.25 | 55.12 | Config | Model |
CWD | 69.60 | 15.35 | 43.74 | 56.37 | Config | Model |
BPKD(Ours) | 69.60 | 15.35 | 46.23 | 58.12 | Config | Model |
T:ISANet-R101 | 228.21 | 56.80 | 53.41 | 64.04 | Config | Model |
S: ISANet-R18 | 54.33 | 12.46 | 44.05 | 54.67 | Config | Model |
SKDS | 54.33 | 12.46 | 45.69 | 56.27 | Config | Model |
IFVD | 54.33 | 12.46 | 46.75 | 56.4 | Config | Model |
CIRKD | 54.33 | 12.46 | 45.83 | 56.11 | Config | Model |
CWD | 54.33 | 12.46 | 46.76 | 56.48 | Config | Model |
BPKD(Ours) | 54.33 | 12.46 | 47.25 | 56.81 | Config | Model |
For academic use, this project is licensed under the 2-clause BSD License - see the LICENSE file for details. For commercial use, please contact the corresponding author.
@article{liu2023bpkd,
title={BPKD: Boundary Privileged Knowledge Distillation For Semantic Segmentation},
author={Liu, Liyang and Wang, Zihan and Phan, Minh Hieu and Zhang, Bowen and Liu, Yifan},
journal={IEEE/CVF Winter Conference on Applications of Computer Vision 2024},
year={2023}
}
Training Code Coming Soon ...