🔥G-UNETR++: A Gradient-Enhanced Network for Accurate and Robust Liver Segmentation from CT images
Paper: G-UNETR++
Our code is based on UNETR++ code.
But, we modified the code for easy implementation.
Our GPU is RTX 3090 GPU
.
- Create and activate conda environment
conda create --name gunetr_pp python=3.9
conda activate gunetr_pp
- Install pytorch
# cuda 11.3
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.3 -c pytorch
It is important that check your cuda version
.
Please, see the pytorch document.
- Install other dependencies
pip install -r requirements.txt
In paper, we teseted LiTS
, 3Dircadb
, and Sliver07
.
GUNETR_pplus_LiTS
├── DATASET_Synapse
│ ├── unetr_pp_raw
│ ├── unetr_pp_raw_data
│ ├── Task02_Synapse
│ ├── Task002_Synapse
│ ├── seg_gt
│ ├── 3Dircadb
│ ├── LiTS
│ ├── segmentation-3.nii
│ ├── segmentation-5.nii
│ ├── ...
│ └── segmentation-127.nii
│ ├── Sliver07
│ ├── unetr_pp_Data_plans_v2.1_stage1
│ ├── 3Dircadb
│ ├── LiTS
│ ├── volume-3.nii
│ ├── volume-5.nii
│ ├── ...
│ └── volume-127.nii
│ ├── Sliver07
│ └── unetr_pp_Plansv2.1_plans_3D.pkl
LiTS dataset: 131 cases.
3Dircadb link: 20 cases.
Sliver07 link: 20 cases.
Our LiTS-testset number is
3, 5, 15, 18, 28, 33, 37, 42, 47, 54, 62, 70, 73, 80, 90, 100, 105, 110, 121, and 127
.
GUNETR_pplus_LiTS
├── output_synapse
│ ├── 3d_fullres
│ ├── Task002_Synapse
│ ├── unetr_pp_trainer_synapse__unetr_pp_Plansv2.1
│ ├── fold_4
│ ├── validation_raw
│ ├── model_best.model
│ └── model_best.model.pkl
Best-model-chekcpoint: link.
- Make npy files
$> python LiTS_npy_make.py
You select the options, LiTS
, 3Dircadb
, and Sliver
.
- Evaluation script
$> cd ./evaluation_scripts
$> sh run_evaluation_synapse.sh
You select the options, LiTS
, 3Dircadb
, and Sliver
.
- Calculation metrics
Please see our jupyter notebook.
We implemented all of metric classes.
You can control post-processing option through
flag_post = True
.
Model | DSC | Jaccard | VOE | RAVD | ASSD | RMSD | MSSD |
---|---|---|---|---|---|---|---|
Guo et al. | 0.9430 | --- | --- | --- | 2.30 | 4.70 | 34.70 |
Song et al. | 0.9680 | --- | 0.0700 | 0.0150 | --- | --- | --- |
Lei et al. | 0.9630 | --- | 0.0688 | 0.0146 | 1.37 | 77.60 | --- |
Chen et al. | 0.9650 | --- | 0.0670 | 0.0090 | 1.22 | 28.09 | --- |
Zhu et al. | 0.9688 | 0.9422 | 0.0578 | 0.0039 | 1.09 | --- | 16.08 |
Chen et al. | 0.9727 | --- | 0.0531 | 1.0800 | 1.31 | 3.05 | --- |
Ours (G-UNTER++) | 0.9737 | 0.9490 | 0.0511 | 0.0201 | 0.64 | 1.17 | 12.75 |
@ARTICLE{
title={G-UNETR++: A gradient-enhanced network for accurate and robust liver segmentation from CT images},
author={Seungyoo Lee, Kyujin Han, Hangyeul Shin, Harin Park, Xiaopeng Yang, Jae Do Yang, Hee Chul Yu, Heecheon You},
journal={},
year={2024},
doi={}}