Skip to content

[WACV 2024] TriCoLo: Trimodal Contrastive Loss for Text to Shape Retrieval

License

Notifications You must be signed in to change notification settings

3dlg-hcvc/tricolo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

7f5d616 · Mar 23, 2024

History

7 Commits
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Mar 23, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024
Jan 16, 2024

Repository files navigation

TriCoLo

PyTorch Lightning WandB

This repo is the official implementation for TriCoLo: Trimodal Contrastive Loss for Text to Shape Retrieval

(Paper) (Project Page)

Setup

Conda (recommended)

We recommend the use of miniconda to manage system dependencies.

# create and activate the conda environment
conda create -n tricolo python=3.10
conda activate tricolo

# install PyTorch 2.0.1
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

# install Python libraries
pip install .

Pip (without conda)

# create and activate the virtual environment
virtualenv --no-download env
source env/bin/activate

# install PyTorch 2.0.1
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2

# install Python libraries
pip install .

Data Preparation

ShapeNet

Download ShapeNet, and place ShapeNetCore.v2 in the data/text2shape-data folder.

Text2Shape (Chair & Table)

  1. Download Text2Shape and place shapenet.json and processed_caption_{train/val/test}.p in the text2shape-data/chair_table folder.

  2. Download ShapeNet solid voxels (Chair & Table):

    cd text2shape-data
    mkdir chair_table
    cd chair_table
    wget http://text2shape.stanford.edu/dataset/shapenet/nrrd_256_filter_div_32_solid.zip
    wget http://text2shape.stanford.edu/dataset/shapenet/nrrd_256_filter_div_64_solid.zip
    wget http://text2shape.stanford.edu/dataset/shapenet/nrrd_256_filter_div_128_solid.zip
    unzip nrrd_256_filter_div_32_solid.zip
    unzip nrrd_256_filter_div_64_solid.zip
    unzip nrrd_256_filter_div_128_solid.zip

    Finally, the dataset files should be organized as follows:

    tricolo
    ├── data
    │   ├── preprocess_all_data.py
    │   ├── text2shape-data
    │   │   ├── ShapeNetCore.v2
    │   │   ├── chair_table
    │   │   │   ├── nrrd_256_filter_div_32_solid
    │   │   │   ├── nrrd_256_filter_div_64_solid
    │   │   │   ├── nrrd_256_filter_div_128_solid
    │   │   │   ├── processed_captions_train.p
    │   │   │   ├── processed_captions_val.p
    │   │   │   ├── processed_captions_test.p
    │   │   │   ├── shapenet.json
  3. Preprocess the dataset

    python data/preprocess_all_data.py data=text2shape_chair_table +cpu_workers={num_processes}
  4. Precache the CLIP embeddings (optional)

    python extract_clip_feats.py data=text2shape_chair_table data.image_size=224

Text2Shape (C13)

  1. Download Text2Shape C13.

Training, Inference and Evaluation

Note: Configuration files are managed by Hydra, you can easily add or override any configuration attributes by passing them as arguments.

# log in to WandB
wandb login

# train a model from scratch
# available voxel_encoder_name: SparseCNNEncoder, null
# available image_encoder_name: MVCNNEncoder, CLIPImageEncoder, null
# available text_encoder_name: BiGRUEncoder, CLIPTextEncoder
# available dataset_name: text2shape_chair_table, text2shape_c13
python train.py data={dataset_name} model.voxel_encoder={voxel_encoder_name} \
model.image_encoder={image_encoder_name} model.text_encoder={text_encoder_name} \
experiment_name={any_string}

# train a model from a checkpoint
python train.py data={dataset_name} model.voxel_encoder={voxel_encoder_name} \
model.image_encoder={image_encoder_name} model.text_encoder={text_encoder_name} \
experiment_name={checkpoint_experiment_name} ckpt_name={checkpoint_file_name}

# test a pretrained model
python test.py data={dataset_name} model.voxel_encoder={voxel_encoder_name} \
model.image_encoder={image_encoder_name} model.text_encoder={text_encoder_name} \
experiment_name={checkpoint_experiment_name} +ckpt_path={checkpoint_file_path}

# evaluate inference results
# currently unavailable

Checkpoints

Modality Dataset Split RR@1 RR@5 NDCG@5 Download
Tri(I+V) Text2Shape (Chair & Table) Val 12.60 33.34 23.30 chair_table_tri.ckpt
Bi(I) Text2Shape (Chair & Table) Val 11.67 30.63 21.49 chair_table_bi_i.ckpt
Bi(V) Text2Shape (Chair & Table) Val 9.33 27.52 18.62 chair_table_bi_v.ckpt
Tri(I+V) Text2Shape (C13) Val 12.96 34.87 24.19 c13_tri.ckpt
Bi(I) Text2Shape (C13) Val 11.89 33.48 22.96 c13_bi_i.ckpt
Bi(V) Text2Shape (C13) Val 9.73 29.24 19.69 c13_bi_v.ckpt

Acknowledgements

  1. ConVIRT: Our overall training framework is heavily based on the ConVIRT implementation. Paper
  2. MVCNN The MVCNN implementation we used is from this implementation. Paper
  3. Text2Shape: We download the dataset and modify the evaluation code from the original Text2Shape dataset. Paper

We thank the authors for their work and the implementations.