-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add normalizer interface & move instances out (#420)
- Loading branch information
Showing
8 changed files
with
270 additions
and
247 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
import json | ||
import logging | ||
import re | ||
from typing import Dict, Tuple, List, Literal, Callable, Optional | ||
import sys | ||
|
||
from numba import jit | ||
import numpy as np | ||
|
||
from .utils.io import del_all | ||
|
||
|
||
@jit | ||
def _find_index(table: np.ndarray, val: np.uint16): | ||
for i in range(table.size): | ||
if table[i] == val: | ||
return i | ||
return -1 | ||
|
||
@jit | ||
def _fast_replace(table: np.ndarray, text: bytes) -> Tuple[np.ndarray, List[Tuple[str, str]]]: | ||
result = np.frombuffer(text, dtype=np.uint16).copy() | ||
replaced_words = [] | ||
for i in range(result.size): | ||
ch = result[i] | ||
p = _find_index(table[0], ch) | ||
if p >= 0: | ||
repl_char = table[1][p] | ||
result[i] = repl_char | ||
replaced_words.append((chr(ch), chr(repl_char))) | ||
return result, replaced_words | ||
|
||
class Normalizer: | ||
def __init__(self, map_file_path: str, logger=logging.getLogger(__name__)): | ||
self.logger = logger | ||
self.normalizers: Dict[str, Callable[[str], str]] = {} | ||
self.homophones_map = self._load_homophones_map(map_file_path) | ||
""" | ||
homophones_map | ||
Replace the mispronounced characters with correctly pronounced ones. | ||
Creation process of homophones_map.json: | ||
1. Establish a word corpus using the [Tencent AI Lab Embedding Corpora v0.2.0 large] with 12 million entries. After cleaning, approximately 1.8 million entries remain. Use ChatTTS to infer the text. | ||
2. Record discrepancies between the inferred and input text, identifying about 180,000 misread words. | ||
3. Create a pinyin to common characters mapping using correctly read characters by ChatTTS. | ||
4. For each discrepancy, extract the correct pinyin using [python-pinyin] and find homophones with the correct pronunciation from the mapping. | ||
Thanks to: | ||
[Tencent AI Lab Embedding Corpora for Chinese and English Words and Phrases](https://ai.tencent.com/ailab/nlp/en/embedding.html) | ||
[python-pinyin](https://github.com/mozillazg/python-pinyin) | ||
""" | ||
self.coding = "utf-16-le" if sys.byteorder == "little" else "utf-16-be" | ||
self.accept_pattern = re.compile(r'[^\u4e00-\u9fffA-Za-z,。、,\. ]') | ||
self.sub_pattern = re.compile(r'\[uv_break\]|\[laugh\]|\[lbreak\]') | ||
self.chinese_char_pattern = re.compile(r'[\u4e00-\u9fff]') | ||
self.english_word_pattern = re.compile(r'\b[A-Za-z]+\b') | ||
self.character_simplifier = str.maketrans({ | ||
':': ',', | ||
';': ',', | ||
'!': '。', | ||
'(': ',', | ||
')': ',', | ||
'【': ',', | ||
'】': ',', | ||
'『': ',', | ||
'』': ',', | ||
'「': ',', | ||
'」': ',', | ||
'《': ',', | ||
'》': ',', | ||
'-': ',', | ||
'‘': '', | ||
'“': '', | ||
'’': '', | ||
'”': '', | ||
':': ',', | ||
';': ',', | ||
'!': '.', | ||
'(': ',', | ||
')': ',', | ||
'[': ',', | ||
']': ',', | ||
'>': ',', | ||
'<': ',', | ||
'-': ',', | ||
}) | ||
self.halfwidth_2_fullwidth = str.maketrans({ | ||
'!': '!', | ||
'"': '“', | ||
"'": '‘', | ||
'#': '#', | ||
'$': '$', | ||
'%': '%', | ||
'&': '&', | ||
'(': '(', | ||
')': ')', | ||
',': ',', | ||
'-': '-', | ||
'*': '*', | ||
'+': '+', | ||
'.': '。', | ||
'/': '/', | ||
':': ':', | ||
';': ';', | ||
'<': '<', | ||
'=': '=', | ||
'>': '>', | ||
'?': '?', | ||
'@': '@', | ||
# '[': '[', | ||
'\\': '\', | ||
# ']': ']', | ||
'^': '^', | ||
# '_': '_', | ||
'`': '`', | ||
'{': '{', | ||
'|': '|', | ||
'}': '}', | ||
'~': '~' | ||
}) | ||
|
||
def __call__( | ||
self, | ||
text: str, | ||
do_text_normalization=True, | ||
do_homophone_replacement=True, | ||
lang: Optional[Literal["zh", "en"]] = None, | ||
) -> str: | ||
if do_text_normalization: | ||
_lang = self._detect_language(text) if lang is None else lang | ||
if _lang in self.normalizers: | ||
text = self.normalizers[_lang](text) | ||
if _lang == 'zh': | ||
text = self._apply_half2full_map(text) | ||
invalid_characters = self._count_invalid_characters(text) | ||
if len(invalid_characters): | ||
self.logger.warn(f'found invalid characters: {invalid_characters}') | ||
text = self._apply_character_map(text) | ||
if do_homophone_replacement: | ||
arr, replaced_words = _fast_replace( | ||
self.homophones_map, | ||
text.encode(self.coding), | ||
) | ||
if replaced_words: | ||
text = arr.tobytes().decode(self.coding) | ||
repl_res = ', '.join([f'{_[0]}->{_[1]}' for _ in replaced_words]) | ||
self.logger.info(f'replace homophones: {repl_res}') | ||
return text | ||
|
||
|
||
def register(self, name: str, normalizer: Callable[[str], str]) -> bool: | ||
if name in self.normalizers: | ||
self.logger.warn(f"name {name} has been registered") | ||
return False | ||
if not isinstance(normalizer, Callable[[str], str]): | ||
self.logger.warn("normalizer must have caller type (str) -> str") | ||
return False | ||
self.normalizers[name] = normalizer | ||
return True | ||
|
||
def unregister(self, name: str): | ||
if name in self.normalizers: | ||
del self.normalizers[name] | ||
|
||
def destroy(self): | ||
del_all(self.normalizers) | ||
del self.homophones_map | ||
|
||
def _load_homophones_map(self, map_file_path: str) -> np.ndarray: | ||
with open(map_file_path, 'r', encoding='utf-8') as f: | ||
homophones_map: Dict[str, str] = json.load(f) | ||
map = np.empty((2, len(homophones_map)), dtype=np.uint32) | ||
for i, k in enumerate(homophones_map.keys()): | ||
map[:, i] = (ord(k), ord(homophones_map[k])) | ||
del homophones_map | ||
return map | ||
|
||
def _count_invalid_characters(self, s: str): | ||
s = self.sub_pattern.sub('', s) | ||
non_alphabetic_chinese_chars = self.accept_pattern.findall(s) | ||
return set(non_alphabetic_chinese_chars) | ||
|
||
def _apply_half2full_map(self, text: str) -> str: | ||
return text.translate(self.halfwidth_2_fullwidth) | ||
|
||
def _apply_character_map(self, text: str) -> str: | ||
return text.translate(self.character_simplifier) | ||
|
||
def _detect_language(self, sentence: str) -> Literal["zh", "en"]: | ||
chinese_chars = self.chinese_char_pattern.findall(sentence) | ||
english_words = self.english_word_pattern.findall(sentence) | ||
|
||
if len(chinese_chars) > len(english_words): | ||
return "zh" | ||
else: | ||
return "en" |
Oops, something went wrong.