-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
At product level, all functions now output profile_ranking
#613
At product level, all functions now output profile_ranking
#613
Conversation
profile_ranking
profile_ranking
profile_ranking
profile_ranking
profile_ranking
Dear @maurolepore, First I think to add the profile_ranking in those csv files are fine. Please note that you don't need to do it for the company dataset as you said. Some questions:
|
Thanks @AnneSchoenauer for your feedback. Yes, the reprex above was extremely minimal to clearly show the new colum To see how it varies across rows we need a more complex reprex. Here I use our toy datasets. I think it answers your questions 1 and 3. RE the inconsistency across the values of My suggestion is to remove the "input_" prefix. If anyone wonders where the columns come from (products or inputs), they can simply see the name of the dataset, e.g. library(tiltToyData)
library(readr, warn.conflicts = FALSE)
options(readr.show_col_types = FALSE, width = 500)
# PR tiltIndicator #613
devtools::load_all()
#> ℹ Loading tiltIndicator
companies <- read_csv(toy_emissions_profile_any_companies())
products <- read_csv(toy_emissions_profile_products())
emissions_profile(companies, products) |> unnest_product()
#> # A tibble: 49 × 7
#> companies_id grouped_by risk_category profile_ranking clustered activity_uuid_product_uuid co2_footprint
#> <chr> <chr> <chr> <dbl> <chr> <chr> <dbl>
#> 1 fleischerei-stiefsohn_00000005219477-001 all high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 176.
#> 2 fleischerei-stiefsohn_00000005219477-001 isic_4digit high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 176.
#> 3 fleischerei-stiefsohn_00000005219477-001 tilt_sector high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 176.
#> 4 fleischerei-stiefsohn_00000005219477-001 unit high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 176.
#> 5 fleischerei-stiefsohn_00000005219477-001 unit_isic_4digit high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 176.
#> 6 fleischerei-stiefsohn_00000005219477-001 unit_tilt_sector high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 176.
#> 7 fleischerei-stiefsohn_00000005219477-001 all high 0.8 oven be06d25c-73dc-55fb-965b-0f300453e380_98b48ff2-2200-4b08-9dec-9c7c0e3585bc 58.1
#> 8 fleischerei-stiefsohn_00000005219477-001 isic_4digit medium 0.5 oven be06d25c-73dc-55fb-965b-0f300453e380_98b48ff2-2200-4b08-9dec-9c7c0e3585bc 58.1
#> 9 fleischerei-stiefsohn_00000005219477-001 tilt_sector medium 0.667 oven be06d25c-73dc-55fb-965b-0f300453e380_98b48ff2-2200-4b08-9dec-9c7c0e3585bc 58.1
#> 10 fleischerei-stiefsohn_00000005219477-001 unit medium 0.5 oven be06d25c-73dc-55fb-965b-0f300453e380_98b48ff2-2200-4b08-9dec-9c7c0e3585bc 58.1
#> # ℹ 39 more rows
companies <- read_csv(toy_emissions_profile_any_companies())
products <- read_csv(toy_emissions_profile_products())
inputs <- read_csv(toy_emissions_profile_upstream_products())
emissions_profile_upstream(companies, inputs) |> unnest_product()
#> # A tibble: 319 × 8
#> companies_id grouped_by risk_category profile_ranking clustered activity_uuid_product_uuid input_activity_uuid_product_uuid input_co2_footprint
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <dbl>
#> 1 fleischerei-stiefsohn_00000005219477-001 all high 0.909 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5 7.07e+0
#> 2 fleischerei-stiefsohn_00000005219477-001 all high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 1aeb18b9-8355-560f-82aa-543c771c4d61_a0e53510-b90b-43ba-80cc-7600f5d 3.99e+1
#> 3 fleischerei-stiefsohn_00000005219477-001 all medium 0.636 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 22704506-7707-5ae7-990d-ebf01ac04fb5_50c41012-3b00-429d-ace3-40d0 5.12e-1
#> 4 fleischerei-stiefsohn_00000005219477-001 all high 0.758 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 92078219-1ed3-5215-9f70-931cdefad520_5c21b18e-e32d-4c76-8d16-2238632 1.24e+0
#> 5 fleischerei-stiefsohn_00000005219477-001 all high 0.970 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 9d483329-b09a-5513-b1bc-722cb211e928_bd4dca-497e-bdd9-fcd343012087 2.12e+1
#> 6 fleischerei-stiefsohn_00000005219477-001 all low 0.0909 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 8709b463-732e-592e-9b88-999ed17af48f_6b6b3a15-e0-baea-cda98afc61c2 1.24e-9
#> 7 fleischerei-stiefsohn_00000005219477-001 all low 0.121 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa d44e7db1-4dda-51ed2929a8f1a2_32e60fbc-4778-470c-9653-feb859a3418f 7 e-9
#> 8 fleischerei-stiefsohn_00000005219477-001 all high 0.697 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 7c7718bb-2372-5d04-a7ac-1ae5b12b05e3_61396bcb-bf35-411a-a6a6-85e8 1.04e+0
#> 9 fleischerei-stiefsohn_00000005219477-001 input_isic_4digit high 0.857 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5 7.07e+0
#> 10 fleischerei-stiefsohn_00000005219477-001 input_isic_4digit high 1 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa 1aeb18b9-8355-560f-82aa-543c771c4d61_a0e53510-b90b-43ba-80cc-7600f5d 3.99e+1
#> # ℹ 309 more rows
companies <- read_csv(toy_sector_profile_companies())
scenarios <- read_csv(toy_sector_profile_any_scenarios())
sector_profile(companies, scenarios) |> unnest_product()
#> # A tibble: 196 × 11
#> companies_id grouped_by risk_category profile_ranking clustered activity_uuid_product_uuid tilt_sector scenario year type tilt_subsector
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
#> 1 fleischerei-stiefsohn_00000005219477-001 ipr_1.5c rps_2030 high 0.23 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> 1.5c rps 2030 ipr <NA>
#> 2 fleischerei-stiefsohn_00000005219477-001 ipr_1.5c rps_2050 high 0.96 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> 1.5c rps 2050 ipr <NA>
#> 3 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2020 low 0 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> stated policies scenario 2020 weo <NA>
#> 4 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2020 low 0 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> announced pledges scenario 2020 weo <NA>
#> 5 fleischerei-stiefsohn_00000005219477-001 weo_net zero emissions by 2050 scenario_2020 low 0 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> net zero emissions by 2050 scenario 2020 weo <NA>
#> 6 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2030 low -0.0752 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> stated policies scenario 2030 weo <NA>
#> 7 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2030 low 0.0781 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> announced pledges scenario 2030 weo <NA>
#> 8 fleischerei-stiefsohn_00000005219477-001 weo_net zero emissions by 2050 scenario_2030 high 0.233 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> net zero emissions by 2050 scenario 2030 weo <NA>
#> 9 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2040 low -0.0270 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> stated policies scenario 2040 weo <NA>
#> 10 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2040 medium 0.336 steel 0faa7ecb-fef2-5117-8993-387c1236-001e-49b5-aa3d-810c0214f9ce <NA> announced pledges scenario 2040 weo <NA>
#> # ℹ 186 more rows
companies <- read_csv(toy_sector_profile_upstream_companies())
scenarios <- read_csv(toy_sector_profile_any_scenarios())
inputs <- read_csv(toy_sector_profile_upstream_products())
sector_profile_upstream(companies, scenarios, inputs) |> unnest_product()
#> # A tibble: 704 × 13
#> companies_id grouped_by risk_category profile_ranking clustered activity_uuid_product_uuid tilt_sector scenario year type input_activity_uuid_product_uuid input_tilt_sector input_tilt_subsector
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2020 low 0 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy stated policies scenario 2020 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 2 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2030 low -0.192 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy stated policies scenario 2030 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 3 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2040 low -0.517 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy stated policies scenario 2040 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 4 fleischerei-stiefsohn_00000005219477-001 weo_stated policies scenario_2050 low -0.689 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy stated policies scenario 2050 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 5 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2020 low 0 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy announced pledges scenario 2020 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 6 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2030 high 0.301 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy announced pledges scenario 2030 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 7 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2040 high 1.83 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy announced pledges scenario 2040 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 8 fleischerei-stiefsohn_00000005219477-001 weo_announced pledges scenario_2050 high 3.17 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy announced pledges scenario 2050 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 9 fleischerei-stiefsohn_00000005219477-001 weo_net zero emissions by 2050 scenario_2020 low 0 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy net zero emissions by 2050 scenario 2020 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> 10 fleischerei-stiefsohn_00000005219477-001 weo_net zero emissions by 2050 scenario_2030 high 0.909 stove 0a242b09-772a-5edf-8e82-9cb4ba52a258_ae39ee61-d4d0-4cce-93b4-0745344da5fa energy net zero emissions by 2050 scenario 2030 weo 5de8c337-dea9-5c1f-9d90-002de27188be_8911bd8c-a96f-4440-9f8e-a7dacf5e79de non-metallic minerals raw minerals
#> # ℹ 694 more rows Created on 2023-11-16 with reprex v2.0.2 |
Closes #549
Closes #581
This PR adds the column
profile_ranking
to all outputs at product level. At company level I believe it makes no sense, since the values ofprofile_ranking
are more granular (@AnneSchoenauer please confirm).TODO
EXCEPTIONS
Slide here any item that you intentionally choose to not do.
Include a unit test. Note the existing tests "outputs expected columns at product level". They already test that the output has columns that ultimately come from the same function:
cols_at_product_level()
.reprex
Created on 2023-11-14 with reprex v2.0.2