PyTorch implementation of our paper, Revisiting Hierarchical Approach for Persistent Long-Term Video Prediction, which will be presented in ICLR 2021. Please check out more qualitative results in our project page.
REPO_DIR='/path/to/clone/this/repo'
git clone https://www.github.com/1Konny/hierarchicalvideoprediction $REPO_DIR
cd $REPO_DIR
bash scripts/dependency.sh
cd $REPO_DIR/image_generator
python scripts/download_models_flownet2.py
python scripts/download_flownet2.py
cd $REPO_DIR
Check it out in this link
CUDA_VISIBLE_DEVICES='0,1,2,3' bash scripts/train_structure_generator.sh $DATASET
, where DATASET
can be one of KITTI
or Cityscapes
.
CUDA_VISIBLE_DEVICES='0' bash scripts/test_structure_generator.sh $DATASET
CUDA_VISIBLE_DEVICES='0,1,2,3' bash scripts/train_image_generator.sh $DATASET
Step 6: Extract RGB-level predictions using the trained image generator and predictions from the structure generator.
CUDA_VISIBLE_DEVICES='0' bash scripts/test_image_generator.sh $DATASET
@inproceedings{
lee2021revisiting,
title={Revisiting Hierarchical Approach for Persistent Long-Term Video Prediction},
author={Wonkwang Lee and Whie Jung and Han Zhang and Ting Chen and Jing Yu Koh and Thomas Huang and Hyungsuk Yoon and Honglak Lee and Seunghoon Hong},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=3RLN4EPMdYd}
}