Skip to content

Latest commit

 

History

History
148 lines (115 loc) · 3.67 KB

PREPARE_DATA.md

File metadata and controls

148 lines (115 loc) · 3.67 KB

How to prepare data

Pre-requisite

  1. We assume that you've cloned this repo under $REPO_DIR

    REPO_DIR='/path/to/clone/this/repo'
    git clone https://www.github.com/1Konny/hierarchicalvideoprediction $REPO_DIR
    
    ----
    
    ./$REPO_DIR
    |-- assets
    |-- docs
    |-- image_generator
    |-- scripts
    `-- structure_generator
  2. Clone the repo for the semantic segmentation model used in our paper.

    SEMSEG_REPO_DIR='/path/to/clone/this/repo'
    git clone https://github.com/1Konny/semantic-segmentation.git --single-branch --branch sdcnet $SEMSEG_REPO_DIR
  3. Download pretrained weights for the sementic segmentation model (Cityscapes, Kitti) to $SEMSEG_REPO_DIR/pretrained_weights directory as follows.

    $SEMSEG_REPO_DIR/pretrained_models/cityscapes_best.pth
    $SEMSEG_REPO_DIR/pretrained_models/kitti_best.pth

KITTI Dataset

  1. Go to the official website, download zip files containing videos, and extract all of them under $REPO_DIR/datasets_raw/KITTI/images directory as follows.

    ./$REPO_DIR/datasets_raw/KITTI/images
    |-- 2011_09_26
    |   |-- 2011_09_26_drive_0001_sync
    |   |-- ...
    |   `-- 2011_09_26_drive_0119_sync
    |-- 2011_09_28
    |   |-- 2011_09_28_drive_0001_sync
    |   |-- ...
    |   `-- 2011_09_28_drive_0225_sync
    |-- 2011_09_29
    |   |-- 2011_09_29_drive_0004_sync
    |   |-- ...
    |   `-- 2011_09_29_drive_0108_sync
    |-- 2011_09_30
    |   |-- 2011_09_30_drive_0016_sync
    |   |-- ...
    |   `-- 2011_09_30_drive_0072_sync
    `-- 2011_10_03
        |-- 2011_10_03_drive_0027_sync
        |-- ...
        `-- 2011_10_03_drive_0058_sync
    
  2. Extract semantic label maps

    cd $SEMSEG_REPO_DIR
    bash extract_labels.sh KITTI $REPO_DIR/datasets_raw/KITTI/images $REPO_DIR/datasets_raw/KITTI/semantic_labels
  3. Pre-process images and labels

    cd $REPO_DIR
    python datasets_raw/process_kitti.py
    
  4. Then, the following directories will be saved:

    $REPO_DIR/structure_generator/datasets/KITTI_64
    $REPO_DIR/image_generator/datasets/KITTI_vid2vid_90
    

Cityscapes Dataset

  1. Go to the official website, download leftImg8bit_sequence_trainvaltest.zip, and extract all of them under $REPO_DIR/datasets_raw/Cityscapes/images directory as follows.

    ./$REPO_DIR/datasets_raw/Cityscapes/images
    |-- test
    |   |-- berlin
    |   |-- bielefeld
    |   |-- bonn
    |   |-- leverkusen
    |   |-- mainz
    |   `-- munich
    |-- train
    |   |-- aachen
    |   |-- bochum
    |   |-- bremen
    |   |-- cologne
    |   |-- darmstadt
    |   |-- dusseldorf
    |   |-- erfurt
    |   |-- hamburg
    |   |-- hanover
    |   |-- jena
    |   |-- krefeld
    |   |-- monchengladbach
    |   |-- strasbourg
    |   |-- stuttgart
    |   |-- tubingen
    |   |-- ulm
    |   |-- weimar
    |   `-- zurich
    `-- val
        |-- frankfurt
        |-- lindau
        `-- munster
  2. Extract semantic label maps

    cd $SEMSEG_REPO_DIR
    bash extract_labels.sh Cityscapes $REPO_DIR/datasets_raw/Cityscapes/images $REPO_DIR/datasets_raw/Cityscapes/semantic_labels
  3. Pre-process images and labels

    cd $REPO_DIR
    python datasets_raw/process_cityscapes.py
  4. Then, the following directories will be saved:

    $REPO_DIR/structure_generator/datasets/Cityscapes_256x512
    $REPO_DIR/image_generator/datasets/Cityscapes_256x512