-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
350 lines (290 loc) · 13.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
"""
Utility functions for link prediction
Most code is adapted from authors' implementation of RGCN link prediction:
https://github.com/MichSchli/RelationPrediction
"""
import os
import numpy as np
import torch
import dgl
import logging
from tqdm import tqdm
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger('Framework')
logger.setLevel(logging.DEBUG)
#######################################################################
#
# Utility function for building training and testing graphs
#
#######################################################################
def get_adj_and_degrees(num_nodes, triplets):
""" Get adjacency list and degrees of the graph
"""
adj_list = [[] for _ in range(num_nodes)]
for i, triplet in enumerate(triplets):
adj_list[triplet[0]].append([i, triplet[2]])
adj_list[triplet[2]].append([i, triplet[0]])
degrees = np.array([len(a) for a in adj_list])
adj_list = [np.array(a) for a in adj_list]
return adj_list, degrees
def sample_edge_neighborhood(adj_list, degrees, n_triplets, sample_size):
"""Sample edges by neighborhool expansion.
This guarantees that the sampled edges form a connected graph, which
may help deeper GNNs that require information from more than one hop.
"""
edges = np.zeros((sample_size,), dtype=np.int32)
# initialize
sample_counts = np.array([d for d in degrees])
picked = np.array([False for _ in range(n_triplets)])
seen = np.array([False for _ in degrees])
for i in range(0, sample_size):
weights = sample_counts * seen
if np.sum(weights) == 0:
weights = np.ones_like(weights)
weights[np.where(sample_counts == 0)] = 0
probabilities = weights / np.sum(weights)
chosen_vertex = np.random.choice(np.arange(degrees.shape[0]),
p=probabilities)
chosen_adj_list = adj_list[chosen_vertex]
seen[chosen_vertex] = True
chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
chosen_edge = chosen_adj_list[chosen_edge]
edge_number = chosen_edge[0]
while picked[edge_number]:
chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
chosen_edge = chosen_adj_list[chosen_edge]
edge_number = chosen_edge[0]
edges[i] = edge_number
other_vertex = chosen_edge[1]
picked[edge_number] = True
sample_counts[chosen_vertex] -= 1
sample_counts[other_vertex] -= 1
seen[other_vertex] = True
return edges
def sample_edge_uniform(_, __, n_triplets, sample_size):
"""Sample edges uniformly from all the edges."""
all_edges = np.arange(n_triplets)
return np.random.choice(all_edges, sample_size, replace=False)
def generate_sampled_graph_and_labels(triplets, sample_size, split_size,
num_rels, adj_list, degrees,
negative_rate, sampler="uniform"):
"""Get training graph and signals
First perform edge neighborhood sampling on graph, then perform negative
sampling to generate negative samples
"""
# perform edge neighbor sampling
if sampler == "uniform":
edges = sample_edge_uniform(
adj_list, degrees, len(triplets), sample_size)
elif sampler == "neighbor":
edges = sample_edge_neighborhood(
adj_list, degrees, len(triplets), sample_size)
else:
raise ValueError(
"Sampler type must be either 'uniform' or 'neighbor'.")
# relabel nodes to have consecutive node ids
edges = triplets[edges]
src, rel, dst = edges.transpose()
uniq_v, edges = np.unique((src, dst), return_inverse=True)
src, dst = np.reshape(edges, (2, -1))
relabeled_edges = np.stack((src, rel, dst)).transpose()
# negative sampling
samples, labels = negative_sampling(relabeled_edges, len(uniq_v),
negative_rate)
# further split graph, only half of the edges will be used as graph
# structure, while the rest half is used as unseen positive samples
split_size = int(sample_size * split_size)
graph_split_ids = np.random.choice(np.arange(sample_size),
size=split_size, replace=False)
src = src[graph_split_ids]
dst = dst[graph_split_ids]
rel = rel[graph_split_ids]
# build DGL graph
logger.info("# sampled nodes: {}".format(len(uniq_v)))
logger.info("# sampled edges: {}".format(len(src) * 2))
g, rel, norm = build_graph_from_triplets(len(uniq_v), num_rels,
(src, rel, dst))
return g, uniq_v, rel, norm, samples, labels
def comp_deg_norm(g):
g = g.local_var()
in_deg = g.in_degrees(range(g.number_of_nodes())).float().numpy()
norm = 1.0 / in_deg
norm[np.isinf(norm)] = 0
return norm
def node_norm_to_edge_norm(g, node_norm):
g = g.local_var()
# convert to edge norm
g.ndata['norm'] = node_norm
g.apply_edges(lambda edges: {'norm': edges.dst['norm']})
return g.edata['norm']
def build_graph_from_triplets(num_nodes, num_rels, triplets):
""" Create a DGL graph. The graph is bidirectional because RGCN authors
use reversed relations.
This function also generates edge type and normalization factor
(reciprocal of node incoming degree)
"""
g = dgl.DGLGraph()
g.add_nodes(num_nodes)
src, rel, dst = triplets
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + num_rels))
edges = sorted(zip(dst, src, rel))
dst, src, rel = np.array(edges).transpose()
g.add_edges(src, dst)
norm = comp_deg_norm(g)
logger.info("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
return g, rel.astype('int64'), norm # .astype('int64') # This is buggy
def build_test_graph(num_nodes, num_rels, edges):
src, rel, dst = edges.transpose()
logger.info("Test graph:")
return build_graph_from_triplets(num_nodes, num_rels, (src, rel, dst))
def negative_sampling(pos_samples, num_entity, negative_rate):
size_of_batch = len(pos_samples)
num_to_generate = size_of_batch * negative_rate
neg_samples = np.tile(pos_samples, (negative_rate, 1))
labels = np.zeros(size_of_batch * (negative_rate + 1), dtype=np.float32)
labels[: size_of_batch] = 1
values = np.random.randint(num_entity, size=num_to_generate)
choices = np.random.uniform(size=num_to_generate)
subj = choices > 0.5
obj = choices <= 0.5
neg_samples[subj, 0] = values[subj]
neg_samples[obj, 2] = values[obj]
return np.concatenate((pos_samples, neg_samples)), labels
#######################################################################
#
# Utility functions for evaluations (filtered)
#
#######################################################################
def filter_o(triplets_to_filter, target_s, target_r, target_o, num_entities,
entity_filter=None):
target_s, target_r, target_o = int(target_s), int(target_r), int(target_o)
filtered_o = []
# Do not filter out the test triplet, since we want to predict on it
if (target_s, target_r, target_o) in triplets_to_filter:
triplets_to_filter.remove((target_s, target_r, target_o))
# Do not consider an object if it is part of a triplet to filter
for o in range(num_entities):
if (target_s, target_r, o) not in triplets_to_filter:
filtered_o.append(o)
# Do further filtering
if entity_filter:
filtered_o = list(filter(lambda idx: idx in entity_filter, filtered_o))
return torch.LongTensor(filtered_o)
def filter_s(triplets_to_filter, target_s, target_r, target_o, num_entities,
entity_filter=None):
target_s, target_r, target_o = int(target_s), int(target_r), int(target_o)
filtered_s = []
# Do not filter out the test triplet, since we want to predict on it
if (target_s, target_r, target_o) in triplets_to_filter:
triplets_to_filter.remove((target_s, target_r, target_o))
# Do not consider a subject if it is part of a triplet to filter
for s in range(num_entities):
if (s, target_r, target_o) not in triplets_to_filter:
filtered_s.append(s)
# Do further filtering
if entity_filter:
filtered_s = list(filter(lambda idx: idx in entity_filter, filtered_s))
return torch.LongTensor(filtered_s)
def perturb_o_and_get_filtered_rank(embedding, decoder, target_triples,
triplets_to_filter, entity_filter=None):
""" Perturb object in the triplets
"""
num_entities = embedding.shape[0]
ranks = []
s, r, o = target_triples[:, 0], target_triples[:, 1], target_triples[:, 2]
for idx in tqdm(range(len(target_triples)), desc='perturbing object...'):
target_s = s[idx]
target_r = r[idx]
target_o = o[idx]
filtered_o = filter_o(triplets_to_filter, target_s,
target_r, target_o, num_entities,
entity_filter)
target_o_idx = int((filtered_o == target_o).nonzero())
scores = decoder.inference(embedding, target_s, target_r, filtered_o)
_, indices = torch.sort(scores, descending=True)
rank = int((indices == target_o_idx).nonzero())
ranks.append(rank)
ranks = torch.LongTensor(ranks) + 1
return ranks
def perturb_s_and_get_filtered_rank(embedding, decoder, target_triples,
triplets_to_filter, entity_filter=None):
""" Perturb subject in the triplets
"""
num_entities = embedding.shape[0]
ranks = []
s, r, o = target_triples[:, 0], target_triples[:, 1], target_triples[:, 2]
for idx in tqdm(range(len(target_triples)), desc='perturbing subject...'):
target_s = s[idx]
target_r = r[idx]
target_o = o[idx]
filtered_s = filter_s(triplets_to_filter, target_s,
target_r, target_o, num_entities,
entity_filter)
target_s_idx = int((filtered_s == target_s).nonzero())
scores = decoder.inference(embedding, filtered_s, target_r, target_o)
_, indices = torch.sort(scores, descending=True)
rank = int((indices == target_s_idx).nonzero())
ranks.append(rank)
ranks = torch.LongTensor(ranks) + 1
return ranks
def eval_filtered(embedding, decoder, train_triplets, valid_triplets, test_triplets,
hits=[], eval_type="valid", entity_filters=(None, None)):
target_triples = None
if eval_type == 'test':
target_triples = test_triplets
elif eval_type == 'valid':
target_triples = valid_triplets
triplets_to_filter = torch.cat(
[train_triplets, valid_triplets, test_triplets]).tolist()
triplets_to_filter = {tuple(triplet) for triplet in triplets_to_filter}
logger.info('Perturbing subject...')
ranks_s = perturb_s_and_get_filtered_rank(embedding, decoder, target_triples,
triplets_to_filter,
entity_filters[0])
logger.info('Perturbing object...')
ranks_o = perturb_o_and_get_filtered_rank(embedding, decoder, target_triples,
triplets_to_filter,
entity_filters[1])
ranks = torch.cat([ranks_s, ranks_o])
result = {'head': {}, 'tail': {}, 'all': {}}
for rank_name, rank_data in {'head': ranks_s, 'tail': ranks_o, 'all': ranks}.items():
logger.info('Eval results for ' + rank_name)
mr = torch.mean(rank_data.float()).item()
mrr = torch.mean(1.0 / rank_data.float()).item()
logger.info("MR: {:.6f}".format(mr))
logger.info("MRR: {:.6f}".format(mrr))
result[rank_name] = {'mr': mr, 'mrr': mrr}
for hit in hits:
avg_count = torch.mean((rank_data <= hit).float()).item()
logger.info(
"Hits @ {}: {:.6f}".format(hit, avg_count))
result[rank_name]['hit_{}'.format(hit)] = avg_count
return result
#######################################################################
#
# Model util function
#
#######################################################################
def load_model(model_state_file, graph_encoder, relation_decoder):
if os.path.exists(model_state_file):
try:
model_dict = torch.load(model_state_file)
graph_encoder.load_state_dict(model_dict['graph'])
relation_decoder.load_state_dict(model_dict['relation'])
epoch = model_dict['epoch']
return epoch
except Exception as e:
logger.warning('Fails to load model because of ' + str(e))
return 0
else:
return 0
def save_model(model_state_file, graph_encoder, relation_decoder, epoch):
model_folder = model_state_file[:model_state_file.rfind('/')]
if not os.path.exists(model_folder):
os.makedirs(model_folder)
torch.save({
'graph': graph_encoder.state_dict(),
'relation': relation_decoder.state_dict(),
'epoch': epoch
}, model_state_file)