forked from nlguillemot/arcball_camera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arcball_camera.h
504 lines (442 loc) · 16 KB
/
arcball_camera.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#ifndef ARCBALL_CAMERA_H
#define ARCBALL_CAMERA_H
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
// Flags for tweaking the view matrix
#define ARCBALL_CAMERA_LEFT_HANDED_BIT 1
// * eye:
// * Current eye position. Will be updated to new eye position.
// * target:
// * Current look target position. Will be updated to new position.
// * up:
// * Camera's "up" direction. Will be updated to new up vector.
// * view (optional):
// * The matrix that will be updated with the new view transform. Previous contents don't matter.
// * delta_time_seconds:
// * Amount of seconds passed since last update.
// * zoom_per_tick:
// * How much the camera should zoom with every scroll wheel tick.
// * pan_speed:
// * How fast the camera should pan when holding middle click.
// * rotation_multiplier:
// * For amplifying the rotation speed. 1.0 means 1-1 mapping between arcball rotation and camera rotation.
// * screen_width/screen_height:
// * Dimensions of the screen the camera is being used in (the window size).
// * x0, x1:
// * Previous and current x coordinate of the mouse, respectively.
// * y0, y1:
// * Previous and current y coordinate of the mouse, respectively.
// * midclick_held:
// * Whether the middle click button is currently held or not.
// * rclick_held:
// * Whether the right click button is currently held or not.
// * delta_scroll_ticks:
// * How many scroll wheel ticks passed since the last update (signed number)
// * flags:
// * For producing a different view matrix depending on your conventions.
void arcball_camera_update(
float eye[3],
float target[3],
float up[3],
float view[16],
float delta_time_seconds,
float zoom_per_tick,
float pan_speed,
float rotation_multiplier,
int screen_width, int screen_height,
int x0, int x1,
int y0, int y1,
int midclick_held,
int rclick_held,
int delta_scroll_ticks,
unsigned int flags);
// Utility for producing a look-to matrix without having to update a camera.
void arcball_camera_look_to(
const float eye[3],
const float look[3],
const float up[3],
float view[16],
unsigned int flags);
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // ARCBALL_CAMERA_H
#ifdef ARCBALL_CAMERA_IMPLEMENTATION
#include <math.h>
#include <assert.h>
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
void arcball_camera_update(
float eye[3],
float target[3],
float up[3],
float view[16],
float delta_time_seconds,
float zoom_per_tick,
float pan_speed,
float rotation_multiplier,
int screen_width, int screen_height,
int px_x0, int px_x1,
int px_y0, int px_y1,
int midclick_held,
int rclick_held,
int delta_scroll_ticks,
unsigned int flags)
{
// check preconditions
{
float up_len = sqrtf(up[0] * up[0] + up[1] * up[1] + up[2] * up[2]);
assert(fabsf(up_len - 1.0f) < 0.000001f);
float to_target[3] = {
target[0] - eye[0],
target[1] - eye[1],
target[2] - eye[2],
};
float to_target_len = sqrtf(to_target[0] * to_target[0] + to_target[1] * to_target[1] + to_target[2] * to_target[2]);
assert(to_target_len > 0.0001f);
}
// right click is held, then mouse movements implement rotation.
if (rclick_held)
{
float x0 = (float)(px_x0 - screen_width / 2);
float x1 = (float)(px_x1 - screen_width / 2);
float y0 = (float)((screen_height - px_y0 - 1) - screen_height / 2);
float y1 = (float)((screen_height - px_y1 - 1) - screen_height / 2);
float arcball_radius = (float)(screen_width > screen_height ? screen_width : screen_height);
// distances to center of arcball
float dist0 = sqrtf(x0 * x0 + y0 * y0);
float dist1 = sqrtf(x1 * x1 + y1 * y1);
float z0;
if (dist0 > arcball_radius)
{
// initial click was not on the arcball, so just do nothing.
goto end_rotate;
}
else
{
// compute depth of intersection using good old pythagoras
z0 = sqrtf(arcball_radius * arcball_radius - x0 * x0 - y0 * y0);
}
float z1;
if (dist1 > arcball_radius)
{
// started inside the ball but went outside, so clamp it.
x1 = (x1 / dist1) * arcball_radius;
y1 = (y1 / dist1) * arcball_radius;
dist1 = arcball_radius;
z1 = 0.0f;
}
else
{
// compute depth of intersection using good old pythagoras
z1 = sqrtf(arcball_radius * arcball_radius - x1 * x1 - y1 * y1);
}
// rotate intersection points according to where the eye is
{
float to_eye_unorm[3] = {
eye[0] - target[0],
eye[1] - target[1],
eye[2] - target[2]
};
float to_eye_len = sqrtf(to_eye_unorm[0] * to_eye_unorm[0] + to_eye_unorm[1] * to_eye_unorm[1] + to_eye_unorm[2] * to_eye_unorm[2]);
float to_eye[3] = {
to_eye_unorm[0] / to_eye_len,
to_eye_unorm[1] / to_eye_len,
to_eye_unorm[2] / to_eye_len
};
float across[3] = {
-(to_eye[1] * up[2] - to_eye[2] * up[1]),
-(to_eye[2] * up[0] - to_eye[0] * up[2]),
-(to_eye[0] * up[1] - to_eye[1] * up[0])
};
// matrix that transforms standard coordinates to be relative to the eye
float eye_m[9] = {
across[0], across[1], across[2],
up[0], up[1], up[2],
to_eye[0], to_eye[1], to_eye[2]
};
float new_p0[3] = {
eye_m[0] * x0 + eye_m[3] * y0 + eye_m[6] * z0,
eye_m[1] * x0 + eye_m[4] * y0 + eye_m[7] * z0,
eye_m[2] * x0 + eye_m[5] * y0 + eye_m[8] * z0,
};
float new_p1[3] = {
eye_m[0] * x1 + eye_m[3] * y1 + eye_m[6] * z1,
eye_m[1] * x1 + eye_m[4] * y1 + eye_m[7] * z1,
eye_m[2] * x1 + eye_m[5] * y1 + eye_m[8] * z1,
};
x0 = new_p0[0];
y0 = new_p0[1];
z0 = new_p0[2];
x1 = new_p1[0];
y1 = new_p1[1];
z1 = new_p1[2];
}
// compute quaternion between the two vectors (http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final)
float qw, qx, qy, qz;
{
float norm_u_norm_v = sqrtf((x0 * x0 + y0 * y0 + z0 * z0) * (x1 * x1 + y1 * y1 + z1 * z1));
qw = norm_u_norm_v + (x0 * x1 + y0 * y1 + z0 * z1);
if (qw < 1.e-6f * norm_u_norm_v)
{
/* If u and v are exactly opposite, rotate 180 degrees
* around an arbitrary orthogonal axis. Axis normalisation
* can happen later, when we normalise the quaternion. */
qw = 0.0f;
if (fabsf(x0) > fabsf(z0))
{
qx = -y0;
qy = x0;
qz = 0.0f;
}
else
{
qx = 0.0f;
qy = -z0;
qz = y0;
}
}
else
{
/* Otherwise, build quaternion the standard way. */
qx = y0 * z1 - z0 * y1;
qy = z0 * x1 - x0 * z1;
qz = x0 * y1 - y0 * x1;
}
float q_len = sqrtf(qx * qx + qy * qy + qz * qz + qw * qw);
qx /= q_len;
qy /= q_len;
qz /= q_len;
qw /= q_len;
}
// amplify the quaternion's rotation by the multiplier
// this is done by slerp(Quaternion.identity, q, multiplier)
// math from http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/
{
// cos(angle) of the quaternion
float c = qw;
if (c > 0.9995f)
{
// if the angle is small, linearly interpolate and normalize.
qx = rotation_multiplier * qx;
qy = rotation_multiplier * qy;
qz = rotation_multiplier * qz;
qw = 1.0f + rotation_multiplier * (qw - 1.0f);
float q_len = sqrtf(qx * qx + qy * qy + qz * qz + qw * qw);
qx /= q_len;
qy /= q_len;
qz /= q_len;
qw /= q_len;
}
else
{
// clamp to domain of acos for robustness
if (c < -1.0f)
c = -1.0f;
else if (c > 1.0f)
c = 1.0f;
// angle of the initial rotation
float theta_0 = acosf(c);
// apply multiplier to rotation
float theta = theta_0 * rotation_multiplier;
// compute the quaternion normalized difference
float qx2 = qx;
float qy2 = qy;
float qz2 = qz;
float qw2 = qw - c;
float q2_len = sqrtf(qx2 * qx2 + qy2 * qy2 + qz2 * qz2 + qw2 * qw2);
qx2 /= q2_len;
qy2 /= q2_len;
qz2 /= q2_len;
qw2 /= q2_len;
// do the slerp
qx = qx2 * sinf(theta);
qy = qy2 * sinf(theta);
qz = qz2 * sinf(theta);
qw = cosf(theta) + qw2 * sinf(theta);
}
}
// vector from the target to the eye, which will be rotated according to the arcball's arc.
float to_eye[3] = { eye[0] - target[0], eye[1] - target[1], eye[2] - target[2] };
// convert quaternion to matrix (note: row major)
float qmat[9] = {
(1.0f - 2.0f * qy * qy - 2.0f * qz * qz), 2.0f * (qx * qy + qw * qz), 2.0f * (qx * qz - qw * qy),
2.0f * (qx * qy - qw * qz), (1.0f - 2.0f * qx * qx - 2.0f * qz * qz), 2.0f * (qy * qz + qw * qx),
2.0f * (qx * qz + qw * qy), 2.0f * (qy * qz - qw * qx), (1.0f - 2.0f * qx * qx - 2.0f * qy * qy)
};
// compute rotated vector
float to_eye2[3] = {
to_eye[0] * qmat[0] + to_eye[1] * qmat[1] + to_eye[2] * qmat[2],
to_eye[0] * qmat[3] + to_eye[1] * qmat[4] + to_eye[2] * qmat[5],
to_eye[0] * qmat[6] + to_eye[1] * qmat[7] + to_eye[2] * qmat[8]
};
// compute rotated up vector
float up2[3] = {
up[0] * qmat[0] + up[1] * qmat[1] + up[2] * qmat[2],
up[0] * qmat[3] + up[1] * qmat[4] + up[2] * qmat[5],
up[0] * qmat[6] + up[1] * qmat[7] + up[2] * qmat[8]
};
float up2_len = sqrtf(up2[0] * up2[0] + up2[1] * up2[1] + up2[2] * up2[2]);
up2[0] /= up2_len;
up2[1] /= up2_len;
up2[2] /= up2_len;
// update eye position
eye[0] = target[0] + to_eye2[0];
eye[1] = target[1] + to_eye2[1];
eye[2] = target[2] + to_eye2[2];
// update up vector
up[0] = up2[0];
up[1] = up2[1];
up[2] = up2[2];
}
end_rotate:
// if midclick is held, then mouse movements implement translation
if (midclick_held)
{
int dx = px_x0 - px_x1;
int dy = -(px_y0 - px_y1);
float to_eye_unorm[3] = {
eye[0] - target[0],
eye[1] - target[1],
eye[2] - target[2]
};
float to_eye_len = sqrtf(to_eye_unorm[0] * to_eye_unorm[0] + to_eye_unorm[1] * to_eye_unorm[1] + to_eye_unorm[2] * to_eye_unorm[2]);
float to_eye[3] = {
to_eye_unorm[0] / to_eye_len,
to_eye_unorm[1] / to_eye_len,
to_eye_unorm[2] / to_eye_len
};
float across[3] = {
-(to_eye[1] * up[2] - to_eye[2] * up[1]),
-(to_eye[2] * up[0] - to_eye[0] * up[2]),
-(to_eye[0] * up[1] - to_eye[1] * up[0])
};
float pan_delta[3] = {
delta_time_seconds * pan_speed * (dx * across[0] + dy * up[0]),
delta_time_seconds * pan_speed * (dx * across[1] + dy * up[1]),
delta_time_seconds * pan_speed * (dx * across[2] + dy * up[2]),
};
eye[0] += pan_delta[0];
eye[1] += pan_delta[1];
eye[2] += pan_delta[2];
target[0] += pan_delta[0];
target[1] += pan_delta[1];
target[2] += pan_delta[2];
}
// compute how much scrolling happened
float zoom_dist = zoom_per_tick * delta_scroll_ticks;
// the direction that the eye will move when zoomed
float to_target[3] = {
target[0] - eye[0],
target[1] - eye[1],
target[2] - eye[2],
};
float to_target_len = sqrtf(to_target[0] * to_target[0] + to_target[1] * to_target[1] + to_target[2] * to_target[2]);
// if the zoom would get you too close, clamp it.
if (!rclick_held)
{
if (zoom_dist >= to_target_len - 0.001f)
{
zoom_dist = to_target_len - 0.001f;
}
}
// normalize the zoom direction
float look[3] = {
to_target[0] / to_target_len,
to_target[1] / to_target_len,
to_target[2] / to_target_len,
};
float eye_zoom[3] = {
look[0] * zoom_dist,
look[1] * zoom_dist,
look[2] * zoom_dist
};
eye[0] += eye_zoom[0];
eye[1] += eye_zoom[1];
eye[2] += eye_zoom[2];
if (rclick_held)
{
// affect target too if right click is held
// this allows you to move forward and backward (as opposed to zoom)
target[0] += eye_zoom[0];
target[1] += eye_zoom[1];
target[2] += eye_zoom[2];
}
arcball_camera_look_to(eye, look, up, view, flags);
}
void arcball_camera_look_to(
const float eye[3],
const float look[3],
const float up[3],
float view[16],
unsigned int flags)
{
if (!view)
return;
float look_len = sqrtf(look[0] * look[0] + look[1] * look[1] + look[2] * look[2]);
float up_len = sqrtf(up[0] * up[0] + up[1] * up[1] + up[2] * up[2]);
assert(fabsf(look_len - 1.0f) < 0.000001f);
assert(fabsf(up_len - 1.0f) < 0.000001f);
// up'' = normalize(up)
float up_norm[3] = { up[0] / up_len, up[1] / up_len, up[2] / up_len };
// f = normalize(look)
float f[3] = { look[0] / look_len, look[1] / look_len, look[2] / look_len };
// s = normalize(cross(f, up2))
float s[3] = {
f[1] * up_norm[2] - f[2] * up_norm[1],
f[2] * up_norm[0] - f[0] * up_norm[2],
f[0] * up_norm[1] - f[1] * up_norm[0]
};
float s_len = sqrtf(s[0] * s[0] + s[1] * s[1] + s[2] * s[2]);
s[0] /= s_len;
s[1] /= s_len;
s[2] /= s_len;
// u = normalize(cross(normalize(s), f))
float u[3] = {
s[1] * f[2] - s[2] * f[1],
s[2] * f[0] - s[0] * f[2],
s[0] * f[1] - s[1] * f[0]
};
float u_len = sqrtf(u[0] * u[0] + u[1] * u[1] + u[2] * u[2]);
u[0] /= u_len;
u[1] /= u_len;
u[2] /= u_len;
if (!(flags & ARCBALL_CAMERA_LEFT_HANDED_BIT))
{
// in a right-handed coordinate system, the camera's z looks away from the look direction.
// this gets flipped again later when you multiply by a right-handed projection matrix
// (notice the last row of gluPerspective, which makes it back into a left-handed system after perspective division)
f[0] = -f[0];
f[1] = -f[1];
f[2] = -f[2];
}
// t = [s;u;f] * -eye
float t[3] = {
s[0] * -eye[0] + s[1] * -eye[1] + s[2] * -eye[2],
u[0] * -eye[0] + u[1] * -eye[1] + u[2] * -eye[2],
f[0] * -eye[0] + f[1] * -eye[1] + f[2] * -eye[2]
};
// m = [s,t[0]; u,t[1]; -f,t[2]];
view[0] = s[0];
view[1] = u[0];
view[2] = f[0];
view[3] = 0.0f;
view[4] = s[1];
view[5] = u[1];
view[6] = f[1];
view[7] = 0.0f;
view[8] = s[2];
view[9] = u[2];
view[10] = f[2];
view[11] = 0.0f;
view[12] = t[0];
view[13] = t[1];
view[14] = t[2];
view[15] = 1.0f;
}
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // ARCBALL_CAMERA_IMPLEMENTATION