-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLISProblem.java
48 lines (48 loc) · 1.55 KB
/
LISProblem.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import java.util.Arrays;
public class LISProblem{
/**
*@author George zhang
*@date 2015.6.15 0:38
*传统DP解决LIS(最长递增子序列)问题
*the code is too ugly
**/
public static void getLISubString(int[] Seq){
int len = Seq.length;
int maxLIS = 0;
int k = 0;
int[] subLen = new int[len]; // record the LIS end by Seq[i] ,用于记录当前各元素作为最大元素的最长递增序列长度
int[] prePos = new int[len]; //record the pre_position 记录当前以该元素作为最大元素的递增序列中该元素的前驱节点,用于打印序列用
for(int i = 0 ;i < len ;i++ ){
subLen[i] = 1;
prePos[i] = i;
}
for(int i = 1 ; i < len ;i++){
//找到以Seq[i]为最末元素的最长递增子序列
for(int j = 0 ;j < i ; j++){
if(Seq[j] < Seq[i] && subLen[j] + 1 > subLen[i]){
subLen[i] = subLen[j] + 1;
prePos[i] = j;
}
}
if(maxLIS < subLen[i]){
maxLIS = subLen[i];
k = i;// 记录LIS的最末元素的位置
}
}
//输出LIS
int[] result = new int[maxLIS];
int m = maxLIS - 1;
while( prePos[k] != k){
result[m--] = Seq[k];
System.out.println(k);
k = prePos[k];
}
// k = 0 的情况所以要添加上
result[m] = Seq[k];
System.out.println(Arrays.toString(result));
}
public static void main(String args[]){
int[] Seq = {3,4,5,3,9,5};
getLISubString(Seq);
}
}