-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
251 lines (201 loc) · 10.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import sys
from model import TransformerDST
from pytorch_transformers import BertTokenizer, AdamW, WarmupLinearSchedule, BertConfig
from utils.data_utils import prepare_dataset, MultiWozDataset
from utils.data_utils import make_slot_meta, domain2id, OP_SET, make_turn_label, postprocessing
from utils.eval_utils import compute_prf, compute_acc, per_domain_join_accuracy
from utils.ckpt_utils import download_ckpt, convert_ckpt_compatible
from evaluation import model_evaluation
import torch
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import numpy as np
import argparse
import random
import os
import json
import time
def masked_cross_entropy_for_value(logits, target, pad_idx=0):
mask = target.ne(pad_idx)
logits_flat = logits.view(-1, logits.size(-1))
log_probs_flat = torch.log(logits_flat)
target_flat = target.view(-1, 1)
losses_flat = -torch.gather(log_probs_flat, dim=1, index=target_flat)
losses = losses_flat.view(*target.size())
losses = losses * mask.float()
loss = losses.sum() / (mask.sum().float())
return loss
def save(args, epoch, model, enc_optimizer, dec_optimizer=None):
model_to_save = model.module if hasattr(
model, 'module') else model # Only save the model it-self
model_file = os.path.join(
args.save_dir, "model.e{:}.bin".format(epoch))
torch.save(model_to_save.state_dict(), model_file)
# enc_optim_file = os.path.join(
# args.save_dir, "enc_optim.e{:}.bin".format(epoch))
# torch.save(enc_optimizer.state_dict(), enc_optim_file)
#
# if dec_optimizer is not None:
# dec_optim_file = os.path.join(
# args.save_dir, "dec_optim.e{:}.bin".format(epoch))
# torch.save(dec_optimizer.state_dict(), dec_optim_file)
def load(args, epoch):
model_file = os.path.join(
args.save_dir, "model.e{:}.bin".format(epoch))
model_recover = torch.load(model_file, map_location='cpu')
enc_optim_file = os.path.join(
args.save_dir, "enc_optim.e{:}.bin".format(epoch))
enc_recover = torch.load(enc_optim_file, map_location='cpu')
if hasattr(enc_recover, 'state_dict'):
enc_recover = enc_recover.state_dict()
dec_optim_file = os.path.join(
args.save_dir, "dec_optim.e{:}.bin".format(epoch))
dec_recover = torch.load(dec_optim_file, map_location='cpu')
if hasattr(dec_recover, 'state_dict'):
dec_recover = dec_recover.state_dict()
return model_recover, enc_recover, dec_recover
def main(args):
assert args.use_one_optim is True
if args.recover_e > 0:
raise NotImplementedError("This option is from my oldest code version. "
"I have not checked it for this code version.")
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
print("### mkdir {:}".format(args.save_dir))
def worker_init_fn(worker_id):
np.random.seed(args.random_seed + worker_id)
n_gpu = 0
if torch.cuda.is_available() and (not args.use_cpu):
n_gpu = torch.cuda.device_count()
device = torch.device('cuda')
print("### Device: {:}".format(device))
else:
print("### Use CPU (Debugging)")
device = torch.device("cpu")
if args.random_seed < 0:
print("### Pick a random seed")
args.random_seed = random.sample(list(range(1, 100000)), 1)[0]
print("### Random Seed: {:}".format(args.random_seed))
np.random.seed(args.random_seed)
random.seed(args.random_seed)
rng = random.Random(args.random_seed)
torch.manual_seed(args.random_seed)
if n_gpu > 0:
if args.random_seed >= 0:
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
ontology = json.load(open(args.ontology_data))
slot_meta, ontology = make_slot_meta(ontology)
op2id = OP_SET[args.op_code]
print(op2id)
tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True)
train_path = os.path.join(args.data_root, "train.pt")
train_data_raw = torch.load(train_path)[:5000]
print("# train examples %d" % len(train_data_raw))
test_path = os.path.join(args.data_root, "test.pt")
test_data_raw = torch.load(test_path)
print("# test examples %d" % len(test_data_raw))
model_config = BertConfig.from_json_file(args.bert_config_path)
model_config.dropout = args.dropout
model_config.attention_probs_dropout_prob = args.attention_probs_dropout_prob
model_config.hidden_dropout_prob = args.hidden_dropout_prob
type_vocab_size = 4
dec_config = args
model = TransformerDST(model_config, dec_config, len(op2id), len(domain2id),
op2id['update'],
tokenizer.convert_tokens_to_ids(['[MASK]'])[0],
tokenizer.convert_tokens_to_ids(['[SEP]'])[0],
tokenizer.convert_tokens_to_ids(['[PAD]'])[0],
tokenizer.convert_tokens_to_ids(['-'])[0],
type_vocab_size, args.exclude_domain)
test_epochs = [int(e) for e in args.load_epoch.strip().lower().split('-')]
for best_epoch in test_epochs:
print("### Epoch {:}...".format(best_epoch))
sys.stdout.flush()
ckpt_path = os.path.join(args.save_dir, 'model.e{:}.bin'.format(best_epoch))
ckpt = torch.load(ckpt_path, map_location='cpu')
model.load_state_dict(ckpt)
model.to(device)
# eval_res = model_evaluation(model, train_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
# use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, n_gpu=n_gpu,
# is_gt_op=False, is_gt_p_state=False, is_gt_gen=False)
#
# print("### Epoch {:} Train Score : ".format(best_epoch), eval_res)
# print('\n'*2)
# sys.stdout.flush()
eval_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code,
use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, n_gpu=n_gpu,
is_gt_op=False, is_gt_p_state=False, is_gt_gen=False)
print("### Epoch {:} Test Score : ".format(best_epoch), eval_res)
print('\n'*2)
sys.stdout.flush()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--load_epoch", required=True, type=str, help="example: '10-11-12' ")
parser.add_argument("--use_cpu", action='store_true') # Just for my debugging. I have not tested whether it can be used for training model.
# w/o re-using dialogue
parser.add_argument("--no_dial", action='store_true')
# Using only D_t in generation
parser.add_argument("--use_dt_only", action='store_true')
# By default, "decoder" only attend on a specific [SLOT] position.
# If using this option, the "decoder" can access to this group of "[SLOT] domain slot - value".
# NEW: exclude "- value"
parser.add_argument("--use_full_slot", action='store_true')
parser.add_argument("--only_pred_op", action='store_true') # only train to predict state operation just for debugging
parser.add_argument("--use_one_optim", action='store_true') # I use one optim
parser.add_argument("--recover_e", default=0, type=int)
# Required parameters
parser.add_argument("--data_root", default='data/mwz2.1', type=str)
parser.add_argument("--train_data", default='train_dials.json', type=str)
parser.add_argument("--dev_data", default='dev_dials.json', type=str)
parser.add_argument("--test_data", default='test_dials.json', type=str)
parser.add_argument("--ontology_data", default='ontology.json', type=str)
parser.add_argument("--vocab_path", default='assets/vocab.txt', type=str)
parser.add_argument("--bert_config_path", default='./assets/bert_config_base_uncased.json', type=str)
parser.add_argument("--bert_ckpt_path", default='./assets/bert-base-uncased-pytorch_model.bin', type=str)
parser.add_argument("--save_dir", default='outputs', type=str)
parser.add_argument("--random_seed", default=42, type=int)
parser.add_argument("--num_workers", default=0, type=int)
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--enc_warmup", default=0.1, type=float)
parser.add_argument("--dec_warmup", default=0.1, type=float)
parser.add_argument("--enc_lr", default=3e-5, type=float) # my Transformer-AR uses 3e-5
parser.add_argument("--dec_lr", default=1e-4, type=float)
parser.add_argument("--n_epochs", default=30, type=int)
parser.add_argument("--eval_epoch", default=1, type=int)
parser.add_argument("--op_code", default="4", type=str)
parser.add_argument("--slot_token", default="[SLOT]", type=str)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--hidden_dropout_prob", default=0.1, type=float)
parser.add_argument("--attention_probs_dropout_prob", default=0.1, type=float)
parser.add_argument("--decoder_teacher_forcing", default=1, type=float)
parser.add_argument("--word_dropout", default=0.1, type=float)
parser.add_argument("--not_shuffle_state", default=False, action='store_true')
parser.add_argument("--shuffle_p", default=0.5, type=float)
parser.add_argument("--n_history", default=1, type=int)
parser.add_argument("--max_seq_length", default=256, type=int)
parser.add_argument("--msg", default=None, type=str)
parser.add_argument("--exclude_domain", default=False, action='store_true')
# generator
parser.add_argument('--beam_size', type=int, default=1,
help="Beam size for searching")
parser.add_argument("--min_len", default=1, type=int)
parser.add_argument('--length_penalty', type=float, default=0,
help="Length penalty for beam search")
parser.add_argument('--forbid_duplicate_ngrams', action='store_true')
parser.add_argument('--forbid_ignore_word', type=str, default=None,
help="Ignore the word during forbid_duplicate_ngrams")
parser.add_argument('--ngram_size', type=int, default=2)
args = parser.parse_args()
args.train_data_path = os.path.join(args.data_root, args.train_data)
args.dev_data_path = os.path.join(args.data_root, args.dev_data)
args.test_data_path = os.path.join(args.data_root, args.test_data)
args.ontology_data = os.path.join(args.data_root, args.ontology_data)
args.shuffle_state = False if args.not_shuffle_state else True
print('pytorch version: ', torch.__version__)
print(args)
main(args)