-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdt_e15_b16.log
968 lines (923 loc) · 78 KB
/
dt_e15_b16.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
Attention: While Conda works well in a desktop environment, it tends to create more problems than it solves on a cluster. Instead, we recommend that users use virtual environments and the binary packages that we provide through Python wheels as documented on the Python page.
Due to MODULEPATH changes, the following have been reloaded:
1) openmpi/2.1.1
The following have been reloaded with a version change:
1) gcccore/.5.4.0 => gcccore/.7.3.0
+ export CUDA_VISIBLE_DEVICES=0
+ CUDA_VISIBLE_DEVICES=0
+ DATASET_DIR=./data/v21/
+ SAVE_DIR=./outputs/v2_dt_e15_b16_2/
+ python3 train.py --use_dt_only --use_one_optim --n_epochs 15 --batch_size 16 --data_root ./data/v21/ --save_dir ./outputs/v2_dt_e15_b16_2/ --op_code 4
pytorch version: 1.5.0+cu101
Namespace(attention_probs_dropout_prob=0.1, batch_size=16, beam_size=1, bert_ckpt_path='./assets/bert-base-uncased-pytorch_model.bin', bert_config_path='./assets/bert_config_base_uncased.json', data_root='./data/v21/', dec_lr=0.0001, dec_warmup=0.1, decoder_teacher_forcing=1, dev_data='dev_dials.json', dev_data_path='./data/v21/dev_dials.json', dropout=0.1, enc_lr=3e-05, enc_warmup=0.1, eval_epoch=1, exclude_domain=False, forbid_duplicate_ngrams=False, forbid_ignore_word=None, hidden_dropout_prob=0.1, length_penalty=0, max_seq_length=256, min_len=1, msg=None, n_epochs=15, n_history=1, ngram_size=2, no_dial=False, not_shuffle_state=False, num_workers=0, only_pred_op=False, ontology_data='./data/v21/ontology.json', op_code='4', random_seed=42, recover_e=0, save_dir='./outputs/v2_dt_e15_b16_2/', shuffle_p=0.5, shuffle_state=True, slot_token='[SLOT]', test_data='test_dials.json', test_data_path='./data/v21/test_dials.json', train_data='train_dials.json', train_data_path='./data/v21/train_dials.json', use_cpu=False, use_dt_only=True, use_full_slot=False, use_one_optim=True, vocab_path='assets/vocab.txt', word_dropout=0.1)
### mkdir ./outputs/v2_dt_e15_b16_2/
### Device: cuda
### Random Seed: 42
{'delete': 0, 'update': 1, 'dontcare': 2, 'carryover': 3}
# test examples 7368
### decoder_teacher_forcing: 1
# train examples 54984
# dev examples 7371
### word index of '-', 1011
config.type_vocab_size != state_dict[bert.embeddings.token_type_embeddings.weight] (4 != 2)
### Done Load BERT
### Use One Optim
time 0.0 min, [1/15] [0/3437] mean_loss : 14.243, state_loss : 1.598, gen_loss : 10.868, dom_loss : 1.777
time 1.4 min, [1/15] [100/3437] mean_loss : 13.492, state_loss : 0.760, gen_loss : 9.750, dom_loss : 1.669
time 2.8 min, [1/15] [200/3437] mean_loss : 10.902, state_loss : 0.348, gen_loss : 7.170, dom_loss : 1.626
time 4.1 min, [1/15] [300/3437] mean_loss : 8.180, state_loss : 0.234, gen_loss : 5.044, dom_loss : 1.529
time 5.5 min, [1/15] [400/3437] mean_loss : 7.028, state_loss : 0.205, gen_loss : 3.956, dom_loss : 1.548
time 6.9 min, [1/15] [500/3437] mean_loss : 6.373, state_loss : 0.235, gen_loss : 5.346, dom_loss : 1.468
time 8.3 min, [1/15] [600/3437] mean_loss : 6.127, state_loss : 0.229, gen_loss : 3.859, dom_loss : 1.356
time 9.6 min, [1/15] [700/3437] mean_loss : 5.790, state_loss : 0.150, gen_loss : 5.145, dom_loss : 1.694
time 11.0 min, [1/15] [800/3437] mean_loss : 5.475, state_loss : 0.194, gen_loss : 3.194, dom_loss : 1.478
time 12.4 min, [1/15] [900/3437] mean_loss : 5.129, state_loss : 0.164, gen_loss : 3.682, dom_loss : 1.354
time 13.7 min, [1/15] [1000/3437] mean_loss : 4.645, state_loss : 0.144, gen_loss : 2.278, dom_loss : 1.016
time 15.1 min, [1/15] [1100/3437] mean_loss : 4.285, state_loss : 0.176, gen_loss : 2.620, dom_loss : 0.663
time 16.5 min, [1/15] [1200/3437] mean_loss : 3.847, state_loss : 0.185, gen_loss : 3.338, dom_loss : 0.549
time 17.8 min, [1/15] [1300/3437] mean_loss : 3.482, state_loss : 0.207, gen_loss : 2.988, dom_loss : 0.298
time 19.2 min, [1/15] [1400/3437] mean_loss : 3.247, state_loss : 0.223, gen_loss : 2.451, dom_loss : 0.356
time 20.6 min, [1/15] [1500/3437] mean_loss : 2.918, state_loss : 0.205, gen_loss : 2.490, dom_loss : 0.195
time 21.9 min, [1/15] [1600/3437] mean_loss : 2.857, state_loss : 0.194, gen_loss : 2.624, dom_loss : 0.059
time 23.3 min, [1/15] [1700/3437] mean_loss : 2.647, state_loss : 0.191, gen_loss : 2.522, dom_loss : 0.216
time 24.7 min, [1/15] [1800/3437] mean_loss : 2.577, state_loss : 0.110, gen_loss : 1.824, dom_loss : 0.227
time 26.0 min, [1/15] [1900/3437] mean_loss : 2.441, state_loss : 0.149, gen_loss : 2.155, dom_loss : 0.375
time 27.4 min, [1/15] [2000/3437] mean_loss : 2.323, state_loss : 0.098, gen_loss : 2.506, dom_loss : 0.384
time 28.8 min, [1/15] [2100/3437] mean_loss : 2.294, state_loss : 0.195, gen_loss : 1.917, dom_loss : 0.406
time 30.1 min, [1/15] [2200/3437] mean_loss : 2.131, state_loss : 0.134, gen_loss : 1.849, dom_loss : 0.039
time 31.5 min, [1/15] [2300/3437] mean_loss : 2.084, state_loss : 0.161, gen_loss : 1.638, dom_loss : 0.134
time 32.9 min, [1/15] [2400/3437] mean_loss : 1.963, state_loss : 0.143, gen_loss : 1.354, dom_loss : 0.350
time 34.2 min, [1/15] [2500/3437] mean_loss : 1.867, state_loss : 0.128, gen_loss : 1.132, dom_loss : 0.103
time 35.6 min, [1/15] [2600/3437] mean_loss : 1.885, state_loss : 0.087, gen_loss : 1.402, dom_loss : 0.487
time 36.9 min, [1/15] [2700/3437] mean_loss : 1.752, state_loss : 0.084, gen_loss : 0.906, dom_loss : 0.259
time 38.3 min, [1/15] [2800/3437] mean_loss : 1.642, state_loss : 0.199, gen_loss : 1.903, dom_loss : 0.345
time 39.7 min, [1/15] [2900/3437] mean_loss : 1.595, state_loss : 0.151, gen_loss : 0.774, dom_loss : 0.095
time 41.0 min, [1/15] [3000/3437] mean_loss : 1.538, state_loss : 0.090, gen_loss : 1.644, dom_loss : 0.022
time 42.4 min, [1/15] [3100/3437] mean_loss : 1.500, state_loss : 0.130, gen_loss : 0.849, dom_loss : 0.093
time 43.8 min, [1/15] [3200/3437] mean_loss : 1.417, state_loss : 0.114, gen_loss : 1.056, dom_loss : 0.100
time 45.1 min, [1/15] [3300/3437] mean_loss : 1.402, state_loss : 0.118, gen_loss : 0.857, dom_loss : 0.332
time 46.5 min, [1/15] [3400/3437] mean_loss : 1.303, state_loss : 0.101, gen_loss : 0.962, dom_loss : 0.063
time 47.0 min, [2/15] [0/3437] mean_loss : 0.500, state_loss : 0.075, gen_loss : 0.395, dom_loss : 0.029
time 48.4 min, [2/15] [100/3437] mean_loss : 1.048, state_loss : 0.103, gen_loss : 0.623, dom_loss : 0.028
time 49.7 min, [2/15] [200/3437] mean_loss : 0.942, state_loss : 0.124, gen_loss : 0.482, dom_loss : 0.129
time 51.1 min, [2/15] [300/3437] mean_loss : 0.868, state_loss : 0.111, gen_loss : 0.867, dom_loss : 0.026
time 52.5 min, [2/15] [400/3437] mean_loss : 0.797, state_loss : 0.091, gen_loss : 0.493, dom_loss : 0.046
time 53.8 min, [2/15] [500/3437] mean_loss : 0.778, state_loss : 0.159, gen_loss : 0.545, dom_loss : 0.030
time 55.2 min, [2/15] [600/3437] mean_loss : 0.719, state_loss : 0.082, gen_loss : 0.803, dom_loss : 0.071
time 56.5 min, [2/15] [700/3437] mean_loss : 0.624, state_loss : 0.063, gen_loss : 0.178, dom_loss : 0.013
time 57.9 min, [2/15] [800/3437] mean_loss : 0.659, state_loss : 0.064, gen_loss : 0.489, dom_loss : 0.093
time 59.3 min, [2/15] [900/3437] mean_loss : 0.643, state_loss : 0.047, gen_loss : 0.566, dom_loss : 0.179
time 60.6 min, [2/15] [1000/3437] mean_loss : 0.629, state_loss : 0.061, gen_loss : 0.161, dom_loss : 0.046
time 62.0 min, [2/15] [1100/3437] mean_loss : 0.557, state_loss : 0.068, gen_loss : 0.092, dom_loss : 0.342
time 63.4 min, [2/15] [1200/3437] mean_loss : 0.554, state_loss : 0.067, gen_loss : 0.255, dom_loss : 0.113
time 64.7 min, [2/15] [1300/3437] mean_loss : 0.535, state_loss : 0.062, gen_loss : 0.680, dom_loss : 0.041
time 66.1 min, [2/15] [1400/3437] mean_loss : 0.542, state_loss : 0.069, gen_loss : 0.237, dom_loss : 0.086
time 67.5 min, [2/15] [1500/3437] mean_loss : 0.579, state_loss : 0.063, gen_loss : 0.398, dom_loss : 0.099
time 68.8 min, [2/15] [1600/3437] mean_loss : 0.588, state_loss : 0.087, gen_loss : 0.213, dom_loss : 0.654
time 70.2 min, [2/15] [1700/3437] mean_loss : 0.555, state_loss : 0.076, gen_loss : 0.179, dom_loss : 0.026
time 71.6 min, [2/15] [1800/3437] mean_loss : 0.492, state_loss : 0.057, gen_loss : 0.152, dom_loss : 0.110
time 72.9 min, [2/15] [1900/3437] mean_loss : 0.520, state_loss : 0.031, gen_loss : 0.102, dom_loss : 0.051
time 74.3 min, [2/15] [2000/3437] mean_loss : 0.494, state_loss : 0.052, gen_loss : 0.141, dom_loss : 0.015
time 75.6 min, [2/15] [2100/3437] mean_loss : 0.471, state_loss : 0.078, gen_loss : 0.189, dom_loss : 0.279
time 77.0 min, [2/15] [2200/3437] mean_loss : 0.513, state_loss : 0.045, gen_loss : 0.433, dom_loss : 0.021
time 78.4 min, [2/15] [2300/3437] mean_loss : 0.486, state_loss : 0.078, gen_loss : 0.124, dom_loss : 0.328
time 79.7 min, [2/15] [2400/3437] mean_loss : 0.454, state_loss : 0.079, gen_loss : 0.303, dom_loss : 0.022
time 81.1 min, [2/15] [2500/3437] mean_loss : 0.474, state_loss : 0.038, gen_loss : 0.258, dom_loss : 0.124
time 82.5 min, [2/15] [2600/3437] mean_loss : 0.483, state_loss : 0.040, gen_loss : 0.072, dom_loss : 0.050
time 83.9 min, [2/15] [2700/3437] mean_loss : 0.440, state_loss : 0.043, gen_loss : 0.215, dom_loss : 0.727
time 85.2 min, [2/15] [2800/3437] mean_loss : 0.446, state_loss : 0.026, gen_loss : 0.108, dom_loss : 0.060
time 86.6 min, [2/15] [2900/3437] mean_loss : 0.445, state_loss : 0.035, gen_loss : 0.139, dom_loss : 0.149
time 87.9 min, [2/15] [3000/3437] mean_loss : 0.436, state_loss : 0.073, gen_loss : 0.273, dom_loss : 0.422
time 89.3 min, [2/15] [3100/3437] mean_loss : 0.426, state_loss : 0.037, gen_loss : 0.218, dom_loss : 0.012
time 90.7 min, [2/15] [3200/3437] mean_loss : 0.422, state_loss : 0.042, gen_loss : 0.346, dom_loss : 0.011
time 92.0 min, [2/15] [3300/3437] mean_loss : 0.424, state_loss : 0.059, gen_loss : 0.165, dom_loss : 0.092
time 93.4 min, [2/15] [3400/3437] mean_loss : 0.403, state_loss : 0.064, gen_loss : 0.656, dom_loss : 0.015
time 93.9 min, [3/15] [0/3437] mean_loss : 0.559, state_loss : 0.053, gen_loss : 0.427, dom_loss : 0.078
time 95.3 min, [3/15] [100/3437] mean_loss : 0.412, state_loss : 0.036, gen_loss : 0.089, dom_loss : 0.014
time 96.7 min, [3/15] [200/3437] mean_loss : 0.367, state_loss : 0.037, gen_loss : 0.113, dom_loss : 0.044
time 98.0 min, [3/15] [300/3437] mean_loss : 0.419, state_loss : 0.046, gen_loss : 0.156, dom_loss : 0.252
time 99.4 min, [3/15] [400/3437] mean_loss : 0.407, state_loss : 0.066, gen_loss : 0.401, dom_loss : 0.031
time 100.8 min, [3/15] [500/3437] mean_loss : 0.361, state_loss : 0.060, gen_loss : 0.130, dom_loss : 0.122
time 102.1 min, [3/15] [600/3437] mean_loss : 0.299, state_loss : 0.023, gen_loss : 0.088, dom_loss : 0.007
time 103.5 min, [3/15] [700/3437] mean_loss : 0.339, state_loss : 0.017, gen_loss : 0.033, dom_loss : 0.005
time 104.8 min, [3/15] [800/3437] mean_loss : 0.365, state_loss : 0.020, gen_loss : 0.108, dom_loss : 0.332
time 106.2 min, [3/15] [900/3437] mean_loss : 0.361, state_loss : 0.046, gen_loss : 0.104, dom_loss : 0.180
time 107.6 min, [3/15] [1000/3437] mean_loss : 0.368, state_loss : 0.036, gen_loss : 0.052, dom_loss : 0.181
time 109.0 min, [3/15] [1100/3437] mean_loss : 0.362, state_loss : 0.054, gen_loss : 0.021, dom_loss : 0.010
time 110.3 min, [3/15] [1200/3437] mean_loss : 0.382, state_loss : 0.037, gen_loss : 0.056, dom_loss : 0.026
time 111.7 min, [3/15] [1300/3437] mean_loss : 0.295, state_loss : 0.022, gen_loss : 0.018, dom_loss : 0.018
time 113.0 min, [3/15] [1400/3437] mean_loss : 0.355, state_loss : 0.043, gen_loss : 0.032, dom_loss : 0.073
time 114.4 min, [3/15] [1500/3437] mean_loss : 0.338, state_loss : 0.022, gen_loss : 0.052, dom_loss : 0.014
time 115.8 min, [3/15] [1600/3437] mean_loss : 0.304, state_loss : 0.041, gen_loss : 0.166, dom_loss : 0.006
time 117.1 min, [3/15] [1700/3437] mean_loss : 0.379, state_loss : 0.039, gen_loss : 0.284, dom_loss : 0.036
time 118.5 min, [3/15] [1800/3437] mean_loss : 0.345, state_loss : 0.046, gen_loss : 0.056, dom_loss : 0.150
time 119.8 min, [3/15] [1900/3437] mean_loss : 0.340, state_loss : 0.099, gen_loss : 0.332, dom_loss : 0.368
time 121.2 min, [3/15] [2000/3437] mean_loss : 0.357, state_loss : 0.043, gen_loss : 0.037, dom_loss : 0.020
time 122.6 min, [3/15] [2100/3437] mean_loss : 0.413, state_loss : 0.026, gen_loss : 0.350, dom_loss : 0.138
time 124.0 min, [3/15] [2200/3437] mean_loss : 0.356, state_loss : 0.035, gen_loss : 0.360, dom_loss : 0.035
time 125.3 min, [3/15] [2300/3437] mean_loss : 0.377, state_loss : 0.019, gen_loss : 0.179, dom_loss : 0.025
time 126.7 min, [3/15] [2400/3437] mean_loss : 0.325, state_loss : 0.039, gen_loss : 0.064, dom_loss : 0.013
time 128.0 min, [3/15] [2500/3437] mean_loss : 0.392, state_loss : 0.040, gen_loss : 0.255, dom_loss : 0.006
time 129.4 min, [3/15] [2600/3437] mean_loss : 0.367, state_loss : 0.064, gen_loss : 0.048, dom_loss : 0.244
time 130.8 min, [3/15] [2700/3437] mean_loss : 0.382, state_loss : 0.036, gen_loss : 0.063, dom_loss : 0.049
time 132.1 min, [3/15] [2800/3437] mean_loss : 0.342, state_loss : 0.053, gen_loss : 0.331, dom_loss : 0.011
time 133.5 min, [3/15] [2900/3437] mean_loss : 0.380, state_loss : 0.048, gen_loss : 0.462, dom_loss : 0.088
time 134.9 min, [3/15] [3000/3437] mean_loss : 0.330, state_loss : 0.032, gen_loss : 0.019, dom_loss : 0.012
time 136.3 min, [3/15] [3100/3437] mean_loss : 0.345, state_loss : 0.059, gen_loss : 0.283, dom_loss : 0.103
time 137.6 min, [3/15] [3200/3437] mean_loss : 0.356, state_loss : 0.048, gen_loss : 0.053, dom_loss : 0.013
time 139.0 min, [3/15] [3300/3437] mean_loss : 0.325, state_loss : 0.038, gen_loss : 0.029, dom_loss : 0.011
time 140.3 min, [3/15] [3400/3437] mean_loss : 0.335, state_loss : 0.041, gen_loss : 0.067, dom_loss : 0.176
time 140.9 min, [4/15] [0/3437] mean_loss : 0.233, state_loss : 0.049, gen_loss : 0.143, dom_loss : 0.041
time 142.2 min, [4/15] [100/3437] mean_loss : 0.283, state_loss : 0.062, gen_loss : 0.156, dom_loss : 0.104
time 143.6 min, [4/15] [200/3437] mean_loss : 0.341, state_loss : 0.031, gen_loss : 0.342, dom_loss : 0.011
time 145.0 min, [4/15] [300/3437] mean_loss : 0.317, state_loss : 0.034, gen_loss : 0.020, dom_loss : 0.098
time 146.3 min, [4/15] [400/3437] mean_loss : 0.306, state_loss : 0.060, gen_loss : 0.201, dom_loss : 0.021
time 147.7 min, [4/15] [500/3437] mean_loss : 0.252, state_loss : 0.059, gen_loss : 0.220, dom_loss : 0.057
time 149.1 min, [4/15] [600/3437] mean_loss : 0.314, state_loss : 0.047, gen_loss : 0.149, dom_loss : 0.012
time 150.4 min, [4/15] [700/3437] mean_loss : 0.257, state_loss : 0.039, gen_loss : 0.151, dom_loss : 0.013
time 151.8 min, [4/15] [800/3437] mean_loss : 0.312, state_loss : 0.037, gen_loss : 0.156, dom_loss : 0.136
time 153.2 min, [4/15] [900/3437] mean_loss : 0.293, state_loss : 0.080, gen_loss : 0.116, dom_loss : 0.506
time 154.5 min, [4/15] [1000/3437] mean_loss : 0.293, state_loss : 0.025, gen_loss : 0.086, dom_loss : 0.117
time 155.9 min, [4/15] [1100/3437] mean_loss : 0.287, state_loss : 0.070, gen_loss : 0.088, dom_loss : 0.037
time 157.3 min, [4/15] [1200/3437] mean_loss : 0.252, state_loss : 0.021, gen_loss : 0.013, dom_loss : 0.005
time 158.6 min, [4/15] [1300/3437] mean_loss : 0.322, state_loss : 0.047, gen_loss : 0.281, dom_loss : 0.476
time 160.0 min, [4/15] [1400/3437] mean_loss : 0.308, state_loss : 0.028, gen_loss : 0.168, dom_loss : 0.137
time 161.4 min, [4/15] [1500/3437] mean_loss : 0.294, state_loss : 0.049, gen_loss : 0.173, dom_loss : 0.183
time 162.7 min, [4/15] [1600/3437] mean_loss : 0.289, state_loss : 0.055, gen_loss : 0.165, dom_loss : 0.011
time 164.1 min, [4/15] [1700/3437] mean_loss : 0.250, state_loss : 0.040, gen_loss : 0.012, dom_loss : 0.006
time 165.5 min, [4/15] [1800/3437] mean_loss : 0.285, state_loss : 0.029, gen_loss : 0.021, dom_loss : 0.107
time 166.8 min, [4/15] [1900/3437] mean_loss : 0.291, state_loss : 0.022, gen_loss : 0.081, dom_loss : 0.011
time 168.2 min, [4/15] [2000/3437] mean_loss : 0.319, state_loss : 0.015, gen_loss : 0.193, dom_loss : 0.011
time 169.6 min, [4/15] [2100/3437] mean_loss : 0.296, state_loss : 0.052, gen_loss : 0.449, dom_loss : 0.008
time 170.9 min, [4/15] [2200/3437] mean_loss : 0.285, state_loss : 0.027, gen_loss : 0.068, dom_loss : 0.098
time 172.3 min, [4/15] [2300/3437] mean_loss : 0.317, state_loss : 0.044, gen_loss : 0.284, dom_loss : 0.084
time 173.7 min, [4/15] [2400/3437] mean_loss : 0.308, state_loss : 0.087, gen_loss : 0.082, dom_loss : 0.011
time 175.1 min, [4/15] [2500/3437] mean_loss : 0.294, state_loss : 0.030, gen_loss : 0.273, dom_loss : 0.012
time 176.4 min, [4/15] [2600/3437] mean_loss : 0.293, state_loss : 0.035, gen_loss : 0.301, dom_loss : 0.197
time 177.8 min, [4/15] [2700/3437] mean_loss : 0.295, state_loss : 0.038, gen_loss : 0.028, dom_loss : 0.213
time 179.1 min, [4/15] [2800/3437] mean_loss : 0.322, state_loss : 0.041, gen_loss : 0.193, dom_loss : 0.124
time 180.5 min, [4/15] [2900/3437] mean_loss : 0.263, state_loss : 0.041, gen_loss : 0.216, dom_loss : 0.379
time 181.9 min, [4/15] [3000/3437] mean_loss : 0.250, state_loss : 0.038, gen_loss : 0.144, dom_loss : 0.009
time 183.2 min, [4/15] [3100/3437] mean_loss : 0.314, state_loss : 0.035, gen_loss : 0.314, dom_loss : 0.133
time 184.6 min, [4/15] [3200/3437] mean_loss : 0.287, state_loss : 0.038, gen_loss : 0.030, dom_loss : 0.077
time 186.0 min, [4/15] [3300/3437] mean_loss : 0.302, state_loss : 0.034, gen_loss : 0.129, dom_loss : 0.037
time 187.3 min, [4/15] [3400/3437] mean_loss : 0.297, state_loss : 0.027, gen_loss : 0.137, dom_loss : 0.206
time 187.9 min, [5/15] [0/3437] mean_loss : 0.096, state_loss : 0.021, gen_loss : 0.061, dom_loss : 0.014
time 189.2 min, [5/15] [100/3437] mean_loss : 0.259, state_loss : 0.021, gen_loss : 0.065, dom_loss : 0.052
time 190.6 min, [5/15] [200/3437] mean_loss : 0.279, state_loss : 0.007, gen_loss : 0.010, dom_loss : 0.009
time 192.0 min, [5/15] [300/3437] mean_loss : 0.244, state_loss : 0.030, gen_loss : 0.063, dom_loss : 0.009
time 193.3 min, [5/15] [400/3437] mean_loss : 0.260, state_loss : 0.031, gen_loss : 0.009, dom_loss : 0.006
time 194.7 min, [5/15] [500/3437] mean_loss : 0.290, state_loss : 0.023, gen_loss : 0.246, dom_loss : 0.075
time 196.1 min, [5/15] [600/3437] mean_loss : 0.266, state_loss : 0.020, gen_loss : 0.048, dom_loss : 0.006
time 197.4 min, [5/15] [700/3437] mean_loss : 0.224, state_loss : 0.065, gen_loss : 0.069, dom_loss : 0.051
time 198.8 min, [5/15] [800/3437] mean_loss : 0.242, state_loss : 0.038, gen_loss : 0.175, dom_loss : 0.006
time 200.2 min, [5/15] [900/3437] mean_loss : 0.263, state_loss : 0.028, gen_loss : 0.376, dom_loss : 0.113
time 201.5 min, [5/15] [1000/3437] mean_loss : 0.262, state_loss : 0.037, gen_loss : 0.213, dom_loss : 0.064
time 202.9 min, [5/15] [1100/3437] mean_loss : 0.250, state_loss : 0.016, gen_loss : 0.162, dom_loss : 0.033
time 204.3 min, [5/15] [1200/3437] mean_loss : 0.276, state_loss : 0.049, gen_loss : 0.347, dom_loss : 0.010
time 205.6 min, [5/15] [1300/3437] mean_loss : 0.297, state_loss : 0.031, gen_loss : 0.136, dom_loss : 0.007
time 207.0 min, [5/15] [1400/3437] mean_loss : 0.264, state_loss : 0.030, gen_loss : 0.187, dom_loss : 0.010
time 208.4 min, [5/15] [1500/3437] mean_loss : 0.244, state_loss : 0.010, gen_loss : 0.091, dom_loss : 0.027
time 209.7 min, [5/15] [1600/3437] mean_loss : 0.234, state_loss : 0.090, gen_loss : 0.128, dom_loss : 0.398
time 211.1 min, [5/15] [1700/3437] mean_loss : 0.217, state_loss : 0.029, gen_loss : 0.144, dom_loss : 0.037
time 212.5 min, [5/15] [1800/3437] mean_loss : 0.229, state_loss : 0.047, gen_loss : 0.324, dom_loss : 0.008
time 213.8 min, [5/15] [1900/3437] mean_loss : 0.283, state_loss : 0.037, gen_loss : 0.092, dom_loss : 0.216
time 215.2 min, [5/15] [2000/3437] mean_loss : 0.258, state_loss : 0.021, gen_loss : 0.249, dom_loss : 0.005
time 216.6 min, [5/15] [2100/3437] mean_loss : 0.273, state_loss : 0.045, gen_loss : 0.212, dom_loss : 0.018
time 217.9 min, [5/15] [2200/3437] mean_loss : 0.239, state_loss : 0.028, gen_loss : 0.017, dom_loss : 0.007
time 219.3 min, [5/15] [2300/3437] mean_loss : 0.275, state_loss : 0.023, gen_loss : 0.026, dom_loss : 0.041
time 220.7 min, [5/15] [2400/3437] mean_loss : 0.255, state_loss : 0.041, gen_loss : 0.254, dom_loss : 0.005
time 222.0 min, [5/15] [2500/3437] mean_loss : 0.244, state_loss : 0.027, gen_loss : 0.185, dom_loss : 0.006
time 223.4 min, [5/15] [2600/3437] mean_loss : 0.266, state_loss : 0.044, gen_loss : 0.075, dom_loss : 0.009
time 224.8 min, [5/15] [2700/3437] mean_loss : 0.231, state_loss : 0.022, gen_loss : 0.046, dom_loss : 0.005
time 226.1 min, [5/15] [2800/3437] mean_loss : 0.280, state_loss : 0.069, gen_loss : 0.034, dom_loss : 0.433
time 227.5 min, [5/15] [2900/3437] mean_loss : 0.262, state_loss : 0.031, gen_loss : 0.235, dom_loss : 0.132
time 228.9 min, [5/15] [3000/3437] mean_loss : 0.271, state_loss : 0.012, gen_loss : 0.017, dom_loss : 0.004
time 230.2 min, [5/15] [3100/3437] mean_loss : 0.225, state_loss : 0.067, gen_loss : 0.181, dom_loss : 0.158
time 231.6 min, [5/15] [3200/3437] mean_loss : 0.260, state_loss : 0.090, gen_loss : 0.151, dom_loss : 0.243
time 233.0 min, [5/15] [3300/3437] mean_loss : 0.280, state_loss : 0.041, gen_loss : 0.094, dom_loss : 0.013
time 234.3 min, [5/15] [3400/3437] mean_loss : 0.268, state_loss : 0.023, gen_loss : 0.030, dom_loss : 0.057
time 234.9 min, [6/15] [0/3437] mean_loss : 0.681, state_loss : 0.010, gen_loss : 0.457, dom_loss : 0.214
time 236.2 min, [6/15] [100/3437] mean_loss : 0.219, state_loss : 0.042, gen_loss : 0.091, dom_loss : 0.026
time 237.6 min, [6/15] [200/3437] mean_loss : 0.241, state_loss : 0.022, gen_loss : 0.029, dom_loss : 0.008
time 239.0 min, [6/15] [300/3437] mean_loss : 0.213, state_loss : 0.038, gen_loss : 0.170, dom_loss : 0.138
time 240.3 min, [6/15] [400/3437] mean_loss : 0.214, state_loss : 0.049, gen_loss : 0.510, dom_loss : 0.063
time 241.7 min, [6/15] [500/3437] mean_loss : 0.190, state_loss : 0.023, gen_loss : 0.071, dom_loss : 0.119
time 243.1 min, [6/15] [600/3437] mean_loss : 0.249, state_loss : 0.034, gen_loss : 0.248, dom_loss : 0.296
time 244.4 min, [6/15] [700/3437] mean_loss : 0.193, state_loss : 0.051, gen_loss : 0.071, dom_loss : 0.010
time 245.8 min, [6/15] [800/3437] mean_loss : 0.211, state_loss : 0.017, gen_loss : 0.054, dom_loss : 0.004
time 247.2 min, [6/15] [900/3437] mean_loss : 0.197, state_loss : 0.045, gen_loss : 0.006, dom_loss : 0.013
time 248.5 min, [6/15] [1000/3437] mean_loss : 0.228, state_loss : 0.011, gen_loss : 0.070, dom_loss : 0.006
time 249.9 min, [6/15] [1100/3437] mean_loss : 0.241, state_loss : 0.012, gen_loss : 0.052, dom_loss : 0.015
time 251.3 min, [6/15] [1200/3437] mean_loss : 0.227, state_loss : 0.045, gen_loss : 0.195, dom_loss : 0.026
time 252.6 min, [6/15] [1300/3437] mean_loss : 0.199, state_loss : 0.048, gen_loss : 0.214, dom_loss : 0.007
time 254.0 min, [6/15] [1400/3437] mean_loss : 0.219, state_loss : 0.021, gen_loss : 0.064, dom_loss : 0.005
time 255.4 min, [6/15] [1500/3437] mean_loss : 0.239, state_loss : 0.088, gen_loss : 0.072, dom_loss : 0.080
time 256.7 min, [6/15] [1600/3437] mean_loss : 0.222, state_loss : 0.020, gen_loss : 0.006, dom_loss : 0.010
time 258.1 min, [6/15] [1700/3437] mean_loss : 0.209, state_loss : 0.022, gen_loss : 0.059, dom_loss : 0.009
time 259.4 min, [6/15] [1800/3437] mean_loss : 0.215, state_loss : 0.030, gen_loss : 0.004, dom_loss : 0.013
time 260.8 min, [6/15] [1900/3437] mean_loss : 0.225, state_loss : 0.028, gen_loss : 0.026, dom_loss : 0.329
time 262.2 min, [6/15] [2000/3437] mean_loss : 0.234, state_loss : 0.041, gen_loss : 0.273, dom_loss : 0.043
time 263.6 min, [6/15] [2100/3437] mean_loss : 0.251, state_loss : 0.041, gen_loss : 0.191, dom_loss : 0.221
time 264.9 min, [6/15] [2200/3437] mean_loss : 0.222, state_loss : 0.018, gen_loss : 0.074, dom_loss : 0.009
time 266.3 min, [6/15] [2300/3437] mean_loss : 0.220, state_loss : 0.053, gen_loss : 0.208, dom_loss : 0.325
time 267.7 min, [6/15] [2400/3437] mean_loss : 0.233, state_loss : 0.020, gen_loss : 0.170, dom_loss : 0.122
time 269.1 min, [6/15] [2500/3437] mean_loss : 0.230, state_loss : 0.023, gen_loss : 0.075, dom_loss : 0.079
time 270.4 min, [6/15] [2600/3437] mean_loss : 0.230, state_loss : 0.048, gen_loss : 0.287, dom_loss : 0.007
time 271.8 min, [6/15] [2700/3437] mean_loss : 0.204, state_loss : 0.040, gen_loss : 0.013, dom_loss : 0.012
time 273.2 min, [6/15] [2800/3437] mean_loss : 0.247, state_loss : 0.017, gen_loss : 0.166, dom_loss : 0.015
time 274.6 min, [6/15] [2900/3437] mean_loss : 0.201, state_loss : 0.026, gen_loss : 0.112, dom_loss : 0.017
time 276.0 min, [6/15] [3000/3437] mean_loss : 0.239, state_loss : 0.049, gen_loss : 0.240, dom_loss : 0.372
time 277.4 min, [6/15] [3100/3437] mean_loss : 0.231, state_loss : 0.025, gen_loss : 0.140, dom_loss : 0.006
time 278.7 min, [6/15] [3200/3437] mean_loss : 0.229, state_loss : 0.023, gen_loss : 0.122, dom_loss : 0.007
time 280.1 min, [6/15] [3300/3437] mean_loss : 0.220, state_loss : 0.031, gen_loss : 0.200, dom_loss : 0.067
time 281.5 min, [6/15] [3400/3437] mean_loss : 0.237, state_loss : 0.057, gen_loss : 0.219, dom_loss : 0.036
time 282.0 min, [7/15] [0/3437] mean_loss : 0.126, state_loss : 0.032, gen_loss : 0.081, dom_loss : 0.012
time 283.4 min, [7/15] [100/3437] mean_loss : 0.194, state_loss : 0.011, gen_loss : 0.003, dom_loss : 0.006
time 284.8 min, [7/15] [200/3437] mean_loss : 0.187, state_loss : 0.041, gen_loss : 0.178, dom_loss : 0.158
time 286.2 min, [7/15] [300/3437] mean_loss : 0.180, state_loss : 0.067, gen_loss : 0.217, dom_loss : 0.045
time 287.5 min, [7/15] [400/3437] mean_loss : 0.181, state_loss : 0.022, gen_loss : 0.090, dom_loss : 0.344
time 288.9 min, [7/15] [500/3437] mean_loss : 0.218, state_loss : 0.012, gen_loss : 0.007, dom_loss : 0.109
time 290.3 min, [7/15] [600/3437] mean_loss : 0.200, state_loss : 0.021, gen_loss : 0.050, dom_loss : 0.013
time 291.7 min, [7/15] [700/3437] mean_loss : 0.192, state_loss : 0.021, gen_loss : 0.244, dom_loss : 0.065
time 293.1 min, [7/15] [800/3437] mean_loss : 0.208, state_loss : 0.038, gen_loss : 0.120, dom_loss : 0.179
time 294.4 min, [7/15] [900/3437] mean_loss : 0.219, state_loss : 0.042, gen_loss : 0.111, dom_loss : 0.009
time 295.8 min, [7/15] [1000/3437] mean_loss : 0.206, state_loss : 0.060, gen_loss : 0.042, dom_loss : 0.298
time 297.2 min, [7/15] [1100/3437] mean_loss : 0.200, state_loss : 0.032, gen_loss : 0.012, dom_loss : 0.008
time 298.6 min, [7/15] [1200/3437] mean_loss : 0.207, state_loss : 0.029, gen_loss : 0.163, dom_loss : 0.016
time 299.9 min, [7/15] [1300/3437] mean_loss : 0.186, state_loss : 0.021, gen_loss : 0.082, dom_loss : 0.008
time 301.3 min, [7/15] [1400/3437] mean_loss : 0.224, state_loss : 0.065, gen_loss : 0.206, dom_loss : 0.092
time 302.7 min, [7/15] [1500/3437] mean_loss : 0.182, state_loss : 0.032, gen_loss : 0.041, dom_loss : 0.009
time 304.1 min, [7/15] [1600/3437] mean_loss : 0.189, state_loss : 0.036, gen_loss : 0.002, dom_loss : 0.228
time 305.5 min, [7/15] [1700/3437] mean_loss : 0.219, state_loss : 0.025, gen_loss : 0.123, dom_loss : 0.005
time 306.8 min, [7/15] [1800/3437] mean_loss : 0.215, state_loss : 0.011, gen_loss : 0.138, dom_loss : 0.003
time 308.2 min, [7/15] [1900/3437] mean_loss : 0.191, state_loss : 0.023, gen_loss : 0.201, dom_loss : 0.107
time 309.6 min, [7/15] [2000/3437] mean_loss : 0.210, state_loss : 0.038, gen_loss : 0.150, dom_loss : 0.168
time 311.0 min, [7/15] [2100/3437] mean_loss : 0.184, state_loss : 0.034, gen_loss : 0.174, dom_loss : 0.012
time 312.4 min, [7/15] [2200/3437] mean_loss : 0.196, state_loss : 0.034, gen_loss : 0.005, dom_loss : 0.130
time 313.7 min, [7/15] [2300/3437] mean_loss : 0.215, state_loss : 0.031, gen_loss : 0.119, dom_loss : 0.006
time 315.1 min, [7/15] [2400/3437] mean_loss : 0.192, state_loss : 0.035, gen_loss : 0.015, dom_loss : 0.296
time 316.5 min, [7/15] [2500/3437] mean_loss : 0.213, state_loss : 0.022, gen_loss : 0.042, dom_loss : 0.008
time 317.9 min, [7/15] [2600/3437] mean_loss : 0.186, state_loss : 0.042, gen_loss : 0.199, dom_loss : 0.023
time 319.3 min, [7/15] [2700/3437] mean_loss : 0.177, state_loss : 0.042, gen_loss : 0.189, dom_loss : 0.051
time 320.7 min, [7/15] [2800/3437] mean_loss : 0.211, state_loss : 0.043, gen_loss : 0.076, dom_loss : 0.060
time 322.0 min, [7/15] [2900/3437] mean_loss : 0.174, state_loss : 0.040, gen_loss : 0.179, dom_loss : 0.312
time 323.4 min, [7/15] [3000/3437] mean_loss : 0.213, state_loss : 0.019, gen_loss : 0.033, dom_loss : 0.011
time 324.8 min, [7/15] [3100/3437] mean_loss : 0.202, state_loss : 0.020, gen_loss : 0.169, dom_loss : 0.007
time 326.2 min, [7/15] [3200/3437] mean_loss : 0.174, state_loss : 0.074, gen_loss : 0.262, dom_loss : 0.023
time 327.6 min, [7/15] [3300/3437] mean_loss : 0.197, state_loss : 0.043, gen_loss : 0.022, dom_loss : 0.009
time 329.0 min, [7/15] [3400/3437] mean_loss : 0.200, state_loss : 0.030, gen_loss : 0.054, dom_loss : 0.002
time 329.5 min, [8/15] [0/3437] mean_loss : 0.104, state_loss : 0.021, gen_loss : 0.044, dom_loss : 0.039
time 330.9 min, [8/15] [100/3437] mean_loss : 0.190, state_loss : 0.020, gen_loss : 0.009, dom_loss : 0.005
time 332.2 min, [8/15] [200/3437] mean_loss : 0.169, state_loss : 0.021, gen_loss : 0.004, dom_loss : 0.011
time 333.6 min, [8/15] [300/3437] mean_loss : 0.168, state_loss : 0.046, gen_loss : 0.078, dom_loss : 0.058
time 335.0 min, [8/15] [400/3437] mean_loss : 0.167, state_loss : 0.038, gen_loss : 0.077, dom_loss : 0.002
time 336.4 min, [8/15] [500/3437] mean_loss : 0.191, state_loss : 0.018, gen_loss : 0.007, dom_loss : 0.037
time 337.8 min, [8/15] [600/3437] mean_loss : 0.181, state_loss : 0.027, gen_loss : 0.061, dom_loss : 0.006
time 339.1 min, [8/15] [700/3437] mean_loss : 0.166, state_loss : 0.022, gen_loss : 0.028, dom_loss : 0.206
time 340.5 min, [8/15] [800/3437] mean_loss : 0.167, state_loss : 0.014, gen_loss : 0.070, dom_loss : 0.004
time 341.9 min, [8/15] [900/3437] mean_loss : 0.169, state_loss : 0.036, gen_loss : 0.138, dom_loss : 0.007
time 343.3 min, [8/15] [1000/3437] mean_loss : 0.172, state_loss : 0.013, gen_loss : 0.053, dom_loss : 0.013
time 344.7 min, [8/15] [1100/3437] mean_loss : 0.165, state_loss : 0.025, gen_loss : 0.017, dom_loss : 0.008
time 346.0 min, [8/15] [1200/3437] mean_loss : 0.193, state_loss : 0.040, gen_loss : 0.163, dom_loss : 0.064
time 347.4 min, [8/15] [1300/3437] mean_loss : 0.187, state_loss : 0.017, gen_loss : 0.034, dom_loss : 0.005
time 348.8 min, [8/15] [1400/3437] mean_loss : 0.165, state_loss : 0.035, gen_loss : 0.039, dom_loss : 0.004
time 350.2 min, [8/15] [1500/3437] mean_loss : 0.179, state_loss : 0.029, gen_loss : 0.028, dom_loss : 0.170
time 351.5 min, [8/15] [1600/3437] mean_loss : 0.158, state_loss : 0.038, gen_loss : 0.261, dom_loss : 0.001
time 352.9 min, [8/15] [1700/3437] mean_loss : 0.158, state_loss : 0.015, gen_loss : 0.099, dom_loss : 0.007
time 354.3 min, [8/15] [1800/3437] mean_loss : 0.175, state_loss : 0.047, gen_loss : 0.116, dom_loss : 0.002
time 355.7 min, [8/15] [1900/3437] mean_loss : 0.203, state_loss : 0.020, gen_loss : 0.193, dom_loss : 0.001
time 357.1 min, [8/15] [2000/3437] mean_loss : 0.178, state_loss : 0.041, gen_loss : 0.033, dom_loss : 0.016
time 358.5 min, [8/15] [2100/3437] mean_loss : 0.180, state_loss : 0.048, gen_loss : 0.293, dom_loss : 0.012
time 359.8 min, [8/15] [2200/3437] mean_loss : 0.175, state_loss : 0.035, gen_loss : 0.076, dom_loss : 0.146
time 361.2 min, [8/15] [2300/3437] mean_loss : 0.165, state_loss : 0.011, gen_loss : 0.224, dom_loss : 0.003
time 362.6 min, [8/15] [2400/3437] mean_loss : 0.191, state_loss : 0.013, gen_loss : 0.285, dom_loss : 0.233
time 364.0 min, [8/15] [2500/3437] mean_loss : 0.180, state_loss : 0.039, gen_loss : 0.040, dom_loss : 0.374
time 365.3 min, [8/15] [2600/3437] mean_loss : 0.199, state_loss : 0.026, gen_loss : 0.154, dom_loss : 0.005
time 366.7 min, [8/15] [2700/3437] mean_loss : 0.161, state_loss : 0.009, gen_loss : 0.018, dom_loss : 0.003
time 368.1 min, [8/15] [2800/3437] mean_loss : 0.173, state_loss : 0.015, gen_loss : 0.226, dom_loss : 0.069
time 369.5 min, [8/15] [2900/3437] mean_loss : 0.189, state_loss : 0.033, gen_loss : 0.014, dom_loss : 0.007
time 370.9 min, [8/15] [3000/3437] mean_loss : 0.172, state_loss : 0.023, gen_loss : 0.013, dom_loss : 0.004
time 372.3 min, [8/15] [3100/3437] mean_loss : 0.160, state_loss : 0.043, gen_loss : 0.015, dom_loss : 0.300
time 373.6 min, [8/15] [3200/3437] mean_loss : 0.170, state_loss : 0.036, gen_loss : 0.307, dom_loss : 0.008
time 375.0 min, [8/15] [3300/3437] mean_loss : 0.180, state_loss : 0.044, gen_loss : 0.002, dom_loss : 0.002
time 376.4 min, [8/15] [3400/3437] mean_loss : 0.191, state_loss : 0.030, gen_loss : 0.180, dom_loss : 0.067
999, 2.6min
1999, 5.1min
2999, 7.7min
3999, 10.3min
4999, 12.8min
5999, 15.4min
6999, 18.0min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 8 joint accuracy : 0.5442952109618776
Epoch 8 slot turn accuracy : 0.9746122190566211
Epoch 8 slot turn F1: 0.9234458323345126
Epoch 8 op accuracy : 0.975276986388056
Epoch 8 op F1 : {'delete': 0.013562858633281168, 'update': 0.8265585625068478, 'dontcare': 0.2760942760942761, 'carryover': 0.987076952277014}
Epoch 8 op hit count : {'delete': 13, 'update': 7544, 'dontcare': 82, 'carryover': 208024}
Epoch 8 op all count : {'delete': 1901, 'update': 10033, 'dontcare': 423, 'carryover': 208773}
Final Joint Accuracy : 0.372
Final slot turn F1 : 0.9095484290938874
Latency Per Prediction : 141.769678 ms
-----------------------------
hotel 0.48031780426146625 0.9737931864692566
train 0.8078938176737688 0.9924321806962447
restaurant 0.6525985350540635 0.9849087315428526
attraction 0.7010438413361169 0.9889770354906114
taxi 0.5081240768094535 0.9758739537173785
### Epoch 8 Score : {'epoch': 8, 'joint_acc': 0.5442952109618776, 'slot_acc': 0.9746122190566211, 'slot_f1': 0.9234458323345126, 'op_acc': 0.975276986388056, 'op_f1': {'delete': 0.013562858633281168, 'update': 0.8265585625068478, 'dontcare': 0.2760942760942761, 'carryover': 0.987076952277014}, 'final_slot_f1': 0.9095484290938874}
### Best Joint Acc: 0.5442952109618776 ###
999, 2.5min
1999, 5.0min
2999, 7.6min
3999, 10.1min
4999, 12.7min
5999, 15.2min
6999, 17.8min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 8 joint accuracy : 0.5314875135722041
Epoch 8 slot turn accuracy : 0.9729822656532302
Epoch 8 slot turn F1: 0.9172857898236395
Epoch 8 op accuracy : 0.9734889612739321
Epoch 8 op F1 : {'delete': 0.020311442112389978, 'update': 0.7948608593666704, 'dontcare': 0.28883495145631066, 'carryover': 0.9861313331164003}
Epoch 8 op hit count : {'delete': 15, 'update': 7455, 'dontcare': 119, 'carryover': 207591}
Epoch 8 op all count : {'delete': 1454, 'update': 10711, 'dontcare': 633, 'carryover': 208242}
Final Joint Accuracy : 0.36036036036036034
Final slot turn F1 : 0.9072235009850378
Latency Per Prediction : 139.772210 ms
-----------------------------
hotel 0.47874806800618236 0.9720118495620939
train 0.7090539165818922 0.9866847518933051
restaurant 0.664469118667592 0.9860860513532357
attraction 0.6929716399506781 0.9883271681052269
taxi 0.5482866043613707 0.9781412253374846
### Epoch 8 Test Score : {'epoch': 8, 'joint_acc': 0.5314875135722041, 'slot_acc': 0.9729822656532302, 'slot_f1': 0.9172857898236395, 'op_acc': 0.9734889612739321, 'op_f1': {'delete': 0.020311442112389978, 'update': 0.7948608593666704, 'dontcare': 0.28883495145631066, 'carryover': 0.9861313331164003}, 'final_slot_f1': 0.9072235009850378}
time 414.6 min, [9/15] [0/3437] mean_loss : 0.142, state_loss : 0.043, gen_loss : 0.089, dom_loss : 0.009
time 416.0 min, [9/15] [100/3437] mean_loss : 0.164, state_loss : 0.031, gen_loss : 0.061, dom_loss : 0.021
time 417.3 min, [9/15] [200/3437] mean_loss : 0.154, state_loss : 0.026, gen_loss : 0.025, dom_loss : 0.001
time 418.7 min, [9/15] [300/3437] mean_loss : 0.146, state_loss : 0.017, gen_loss : 0.016, dom_loss : 0.005
time 420.1 min, [9/15] [400/3437] mean_loss : 0.138, state_loss : 0.037, gen_loss : 0.004, dom_loss : 0.003
time 421.5 min, [9/15] [500/3437] mean_loss : 0.145, state_loss : 0.020, gen_loss : 0.080, dom_loss : 0.009
time 422.9 min, [9/15] [600/3437] mean_loss : 0.170, state_loss : 0.063, gen_loss : 0.354, dom_loss : 0.025
time 424.3 min, [9/15] [700/3437] mean_loss : 0.157, state_loss : 0.022, gen_loss : 0.004, dom_loss : 0.016
time 425.6 min, [9/15] [800/3437] mean_loss : 0.150, state_loss : 0.013, gen_loss : 0.236, dom_loss : 0.005
time 427.0 min, [9/15] [900/3437] mean_loss : 0.142, state_loss : 0.014, gen_loss : 0.018, dom_loss : 0.001
time 428.4 min, [9/15] [1000/3437] mean_loss : 0.150, state_loss : 0.011, gen_loss : 0.049, dom_loss : 0.217
time 429.8 min, [9/15] [1100/3437] mean_loss : 0.155, state_loss : 0.018, gen_loss : 0.094, dom_loss : 0.091
time 431.2 min, [9/15] [1200/3437] mean_loss : 0.141, state_loss : 0.025, gen_loss : 0.029, dom_loss : 0.008
time 432.6 min, [9/15] [1300/3437] mean_loss : 0.143, state_loss : 0.033, gen_loss : 0.069, dom_loss : 0.002
time 433.9 min, [9/15] [1400/3437] mean_loss : 0.180, state_loss : 0.029, gen_loss : 0.032, dom_loss : 0.025
time 435.3 min, [9/15] [1500/3437] mean_loss : 0.149, state_loss : 0.026, gen_loss : 0.260, dom_loss : 0.002
time 436.7 min, [9/15] [1600/3437] mean_loss : 0.156, state_loss : 0.022, gen_loss : 0.015, dom_loss : 0.002
time 438.1 min, [9/15] [1700/3437] mean_loss : 0.156, state_loss : 0.033, gen_loss : 0.162, dom_loss : 0.002
time 439.5 min, [9/15] [1800/3437] mean_loss : 0.141, state_loss : 0.051, gen_loss : 0.232, dom_loss : 0.010
time 440.8 min, [9/15] [1900/3437] mean_loss : 0.151, state_loss : 0.042, gen_loss : 0.377, dom_loss : 0.002
time 442.2 min, [9/15] [2000/3437] mean_loss : 0.168, state_loss : 0.017, gen_loss : 0.128, dom_loss : 0.005
time 443.6 min, [9/15] [2100/3437] mean_loss : 0.161, state_loss : 0.026, gen_loss : 0.097, dom_loss : 0.040
time 445.0 min, [9/15] [2200/3437] mean_loss : 0.177, state_loss : 0.037, gen_loss : 0.055, dom_loss : 0.002
time 446.4 min, [9/15] [2300/3437] mean_loss : 0.152, state_loss : 0.034, gen_loss : 0.176, dom_loss : 0.002
time 447.8 min, [9/15] [2400/3437] mean_loss : 0.151, state_loss : 0.029, gen_loss : 0.007, dom_loss : 0.008
time 449.1 min, [9/15] [2500/3437] mean_loss : 0.148, state_loss : 0.026, gen_loss : 0.117, dom_loss : 0.010
time 450.5 min, [9/15] [2600/3437] mean_loss : 0.148, state_loss : 0.024, gen_loss : 0.094, dom_loss : 0.001
time 451.9 min, [9/15] [2700/3437] mean_loss : 0.174, state_loss : 0.019, gen_loss : 0.036, dom_loss : 0.194
time 453.3 min, [9/15] [2800/3437] mean_loss : 0.170, state_loss : 0.027, gen_loss : 0.064, dom_loss : 0.013
time 454.6 min, [9/15] [2900/3437] mean_loss : 0.133, state_loss : 0.033, gen_loss : 0.045, dom_loss : 0.022
time 456.0 min, [9/15] [3000/3437] mean_loss : 0.153, state_loss : 0.038, gen_loss : 0.085, dom_loss : 0.004
time 457.4 min, [9/15] [3100/3437] mean_loss : 0.152, state_loss : 0.025, gen_loss : 0.070, dom_loss : 0.017
time 458.8 min, [9/15] [3200/3437] mean_loss : 0.141, state_loss : 0.022, gen_loss : 0.008, dom_loss : 0.004
time 460.2 min, [9/15] [3300/3437] mean_loss : 0.144, state_loss : 0.038, gen_loss : 0.045, dom_loss : 0.014
time 461.5 min, [9/15] [3400/3437] mean_loss : 0.169, state_loss : 0.017, gen_loss : 0.069, dom_loss : 0.082
999, 2.6min
1999, 5.2min
2999, 7.7min
3999, 10.3min
4999, 12.9min
5999, 15.4min
6999, 18.0min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 9 joint accuracy : 0.5512142178808845
Epoch 9 slot turn accuracy : 0.9751458418124651
Epoch 9 slot turn F1: 0.9249091939466152
Epoch 9 op accuracy : 0.9758739203183218
Epoch 9 op F1 : {'delete': 0.020078081427774678, 'update': 0.8261416461580531, 'dontcare': 0.28960817717206133, 'carryover': 0.9873883703554358}
Epoch 9 op hit count : {'delete': 18, 'update': 7553, 'dontcare': 85, 'carryover': 208139}
Epoch 9 op all count : {'delete': 1764, 'update': 10086, 'dontcare': 416, 'carryover': 208864}
Final Joint Accuracy : 0.384
Final slot turn F1 : 0.9123409473571792
Latency Per Prediction : 142.115007 ms
-----------------------------
hotel 0.49512459371614304 0.974358974358987
train 0.8162766329025498 0.9926417510769642
restaurant 0.6396930589466341 0.9848622253226454
attraction 0.7052192066805846 0.9894224077940215
taxi 0.5420974889217134 0.9774987690792689
### Epoch 9 Score : {'epoch': 9, 'joint_acc': 0.5512142178808845, 'slot_acc': 0.9751458418124651, 'slot_f1': 0.9249091939466152, 'op_acc': 0.9758739203183218, 'op_f1': {'delete': 0.020078081427774678, 'update': 0.8261416461580531, 'dontcare': 0.28960817717206133, 'carryover': 0.9873883703554358}, 'final_slot_f1': 0.9123409473571792}
### Best Joint Acc: 0.5512142178808845 ###
999, 2.5min
1999, 5.0min
2999, 7.6min
3999, 10.1min
4999, 12.6min
5999, 15.2min
6999, 17.7min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 9 joint accuracy : 0.5386807817589576
Epoch 9 slot turn accuracy : 0.9738056460368695
Epoch 9 slot turn F1: 0.9200216097022256
Epoch 9 op accuracy : 0.974402823018411
Epoch 9 op F1 : {'delete': 0.03671071953010279, 'update': 0.7978870984953579, 'dontcare': 0.28815628815628813, 'carryover': 0.9866249403429125}
Epoch 9 op hit count : {'delete': 25, 'update': 7477, 'dontcare': 118, 'carryover': 207762}
Epoch 9 op all count : {'delete': 1312, 'update': 10718, 'dontcare': 638, 'carryover': 208372}
Final Joint Accuracy : 0.36936936936936937
Final slot turn F1 : 0.9102389293046727
Latency Per Prediction : 139.367744 ms
-----------------------------
hotel 0.49420401854714063 0.9734415249871318
train 0.7277043065445914 0.9875664066915416
restaurant 0.6603053435114504 0.9857622021744248
attraction 0.6905055487053021 0.988560076722846
taxi 0.5514018691588785 0.9780893042575252
### Epoch 9 Test Score : {'epoch': 9, 'joint_acc': 0.5386807817589576, 'slot_acc': 0.9738056460368695, 'slot_f1': 0.9200216097022256, 'op_acc': 0.974402823018411, 'op_f1': {'delete': 0.03671071953010279, 'update': 0.7978870984953579, 'dontcare': 0.28815628815628813, 'carryover': 0.9866249403429125}, 'final_slot_f1': 0.9102389293046727}
time 499.8 min, [10/15] [0/3437] mean_loss : 0.104, state_loss : 0.005, gen_loss : 0.057, dom_loss : 0.042
time 501.1 min, [10/15] [100/3437] mean_loss : 0.138, state_loss : 0.033, gen_loss : 0.199, dom_loss : 0.002
time 502.5 min, [10/15] [200/3437] mean_loss : 0.141, state_loss : 0.007, gen_loss : 0.098, dom_loss : 0.013
time 503.9 min, [10/15] [300/3437] mean_loss : 0.125, state_loss : 0.023, gen_loss : 0.054, dom_loss : 0.034
time 505.3 min, [10/15] [400/3437] mean_loss : 0.111, state_loss : 0.052, gen_loss : 0.066, dom_loss : 0.003
time 506.7 min, [10/15] [500/3437] mean_loss : 0.147, state_loss : 0.028, gen_loss : 0.066, dom_loss : 0.043
time 508.0 min, [10/15] [600/3437] mean_loss : 0.137, state_loss : 0.034, gen_loss : 0.103, dom_loss : 0.002
time 509.4 min, [10/15] [700/3437] mean_loss : 0.130, state_loss : 0.029, gen_loss : 0.053, dom_loss : 0.030
time 510.8 min, [10/15] [800/3437] mean_loss : 0.145, state_loss : 0.035, gen_loss : 0.133, dom_loss : 0.002
time 512.2 min, [10/15] [900/3437] mean_loss : 0.135, state_loss : 0.022, gen_loss : 0.024, dom_loss : 0.008
time 513.6 min, [10/15] [1000/3437] mean_loss : 0.142, state_loss : 0.022, gen_loss : 0.105, dom_loss : 0.001
time 515.0 min, [10/15] [1100/3437] mean_loss : 0.156, state_loss : 0.028, gen_loss : 0.094, dom_loss : 0.019
time 516.3 min, [10/15] [1200/3437] mean_loss : 0.144, state_loss : 0.028, gen_loss : 0.081, dom_loss : 0.048
time 517.7 min, [10/15] [1300/3437] mean_loss : 0.139, state_loss : 0.041, gen_loss : 0.024, dom_loss : 0.075
time 519.1 min, [10/15] [1400/3437] mean_loss : 0.140, state_loss : 0.018, gen_loss : 0.119, dom_loss : 0.001
time 520.5 min, [10/15] [1500/3437] mean_loss : 0.128, state_loss : 0.025, gen_loss : 0.087, dom_loss : 0.005
time 521.8 min, [10/15] [1600/3437] mean_loss : 0.138, state_loss : 0.009, gen_loss : 0.046, dom_loss : 0.001
time 523.2 min, [10/15] [1700/3437] mean_loss : 0.137, state_loss : 0.021, gen_loss : 0.035, dom_loss : 0.005
time 524.6 min, [10/15] [1800/3437] mean_loss : 0.139, state_loss : 0.023, gen_loss : 0.077, dom_loss : 0.004
time 526.0 min, [10/15] [1900/3437] mean_loss : 0.140, state_loss : 0.025, gen_loss : 0.216, dom_loss : 0.002
time 527.4 min, [10/15] [2000/3437] mean_loss : 0.142, state_loss : 0.021, gen_loss : 0.034, dom_loss : 0.002
time 528.8 min, [10/15] [2100/3437] mean_loss : 0.138, state_loss : 0.013, gen_loss : 0.149, dom_loss : 0.001
time 530.1 min, [10/15] [2200/3437] mean_loss : 0.155, state_loss : 0.053, gen_loss : 0.346, dom_loss : 0.169
time 531.5 min, [10/15] [2300/3437] mean_loss : 0.148, state_loss : 0.012, gen_loss : 0.026, dom_loss : 0.001
time 532.9 min, [10/15] [2400/3437] mean_loss : 0.152, state_loss : 0.069, gen_loss : 0.111, dom_loss : 0.003
time 534.3 min, [10/15] [2500/3437] mean_loss : 0.152, state_loss : 0.025, gen_loss : 0.028, dom_loss : 0.087
time 535.7 min, [10/15] [2600/3437] mean_loss : 0.143, state_loss : 0.030, gen_loss : 0.057, dom_loss : 0.001
time 537.0 min, [10/15] [2700/3437] mean_loss : 0.138, state_loss : 0.030, gen_loss : 0.013, dom_loss : 0.007
time 538.4 min, [10/15] [2800/3437] mean_loss : 0.129, state_loss : 0.018, gen_loss : 0.057, dom_loss : 0.002
time 539.8 min, [10/15] [2900/3437] mean_loss : 0.130, state_loss : 0.033, gen_loss : 0.003, dom_loss : 0.003
time 541.2 min, [10/15] [3000/3437] mean_loss : 0.142, state_loss : 0.026, gen_loss : 0.019, dom_loss : 0.008
time 542.6 min, [10/15] [3100/3437] mean_loss : 0.136, state_loss : 0.015, gen_loss : 0.133, dom_loss : 0.046
time 544.0 min, [10/15] [3200/3437] mean_loss : 0.126, state_loss : 0.025, gen_loss : 0.098, dom_loss : 0.000
time 545.3 min, [10/15] [3300/3437] mean_loss : 0.155, state_loss : 0.037, gen_loss : 0.013, dom_loss : 0.005
time 546.7 min, [10/15] [3400/3437] mean_loss : 0.161, state_loss : 0.090, gen_loss : 0.078, dom_loss : 0.005
999, 2.6min
1999, 5.2min
2999, 7.7min
3999, 10.3min
4999, 12.9min
5999, 15.5min
6999, 18.1min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 10 joint accuracy : 0.547279880613214
Epoch 10 slot turn accuracy : 0.9750056527833864
Epoch 10 slot turn F1: 0.9248235888899768
Epoch 10 op accuracy : 0.9756613756613323
Epoch 10 op F1 : {'delete': 0.01413427561837456, 'update': 0.8325364111019511, 'dontcare': 0.30103806228373703, 'carryover': 0.9872836922843328}
Epoch 10 op hit count : {'delete': 14, 'update': 7574, 'dontcare': 87, 'carryover': 208073}
Epoch 10 op all count : {'delete': 1965, 'update': 9914, 'dontcare': 398, 'carryover': 208853}
Final Joint Accuracy : 0.377
Final slot turn F1 : 0.9135597945286794
Latency Per Prediction : 142.440201 ms
-----------------------------
hotel 0.48031780426146625 0.9737931864692563
train 0.8183723367097451 0.9927698218651814
restaurant 0.653993721660272 0.9853272875247152
attraction 0.7073068893528184 0.9893806541405771
taxi 0.5317577548005908 0.9772033481043801
### Epoch 10 Score : {'epoch': 10, 'joint_acc': 0.547279880613214, 'slot_acc': 0.9750056527833864, 'slot_f1': 0.9248235888899768, 'op_acc': 0.9756613756613323, 'op_f1': {'delete': 0.01413427561837456, 'update': 0.8325364111019511, 'dontcare': 0.30103806228373703, 'carryover': 0.9872836922843328}, 'final_slot_f1': 0.9135597945286794}
time 566.3 min, [11/15] [0/3437] mean_loss : 0.044, state_loss : 0.033, gen_loss : 0.009, dom_loss : 0.002
time 567.7 min, [11/15] [100/3437] mean_loss : 0.134, state_loss : 0.012, gen_loss : 0.111, dom_loss : 0.022
time 569.1 min, [11/15] [200/3437] mean_loss : 0.102, state_loss : 0.027, gen_loss : 0.193, dom_loss : 0.001
time 570.5 min, [11/15] [300/3437] mean_loss : 0.142, state_loss : 0.022, gen_loss : 0.102, dom_loss : 0.007
time 571.8 min, [11/15] [400/3437] mean_loss : 0.133, state_loss : 0.017, gen_loss : 0.048, dom_loss : 0.001
time 573.2 min, [11/15] [500/3437] mean_loss : 0.132, state_loss : 0.034, gen_loss : 0.071, dom_loss : 0.024
time 574.6 min, [11/15] [600/3437] mean_loss : 0.132, state_loss : 0.023, gen_loss : 0.093, dom_loss : 0.005
time 576.0 min, [11/15] [700/3437] mean_loss : 0.137, state_loss : 0.039, gen_loss : 0.054, dom_loss : 0.010
time 577.4 min, [11/15] [800/3437] mean_loss : 0.137, state_loss : 0.036, gen_loss : 0.025, dom_loss : 0.012
time 578.7 min, [11/15] [900/3437] mean_loss : 0.119, state_loss : 0.030, gen_loss : 0.057, dom_loss : 0.018
time 580.1 min, [11/15] [1000/3437] mean_loss : 0.137, state_loss : 0.040, gen_loss : 0.080, dom_loss : 0.001
time 581.5 min, [11/15] [1100/3437] mean_loss : 0.124, state_loss : 0.025, gen_loss : 0.105, dom_loss : 0.002
time 582.9 min, [11/15] [1200/3437] mean_loss : 0.138, state_loss : 0.035, gen_loss : 0.022, dom_loss : 0.005
time 584.3 min, [11/15] [1300/3437] mean_loss : 0.114, state_loss : 0.021, gen_loss : 0.068, dom_loss : 0.001
time 585.6 min, [11/15] [1400/3437] mean_loss : 0.123, state_loss : 0.055, gen_loss : 0.059, dom_loss : 0.205
time 587.0 min, [11/15] [1500/3437] mean_loss : 0.138, state_loss : 0.017, gen_loss : 0.081, dom_loss : 0.032
time 588.4 min, [11/15] [1600/3437] mean_loss : 0.138, state_loss : 0.015, gen_loss : 0.073, dom_loss : 0.001
time 589.8 min, [11/15] [1700/3437] mean_loss : 0.122, state_loss : 0.034, gen_loss : 0.204, dom_loss : 0.002
time 591.2 min, [11/15] [1800/3437] mean_loss : 0.126, state_loss : 0.026, gen_loss : 0.067, dom_loss : 0.002
time 592.5 min, [11/15] [1900/3437] mean_loss : 0.114, state_loss : 0.007, gen_loss : 0.040, dom_loss : 0.075
time 593.9 min, [11/15] [2000/3437] mean_loss : 0.131, state_loss : 0.011, gen_loss : 0.020, dom_loss : 0.001
time 595.3 min, [11/15] [2100/3437] mean_loss : 0.111, state_loss : 0.039, gen_loss : 0.081, dom_loss : 0.002
time 596.7 min, [11/15] [2200/3437] mean_loss : 0.140, state_loss : 0.020, gen_loss : 0.005, dom_loss : 0.001
time 598.1 min, [11/15] [2300/3437] mean_loss : 0.134, state_loss : 0.030, gen_loss : 0.021, dom_loss : 0.002
time 599.4 min, [11/15] [2400/3437] mean_loss : 0.125, state_loss : 0.031, gen_loss : 0.104, dom_loss : 0.039
time 600.8 min, [11/15] [2500/3437] mean_loss : 0.147, state_loss : 0.007, gen_loss : 0.032, dom_loss : 0.001
time 602.2 min, [11/15] [2600/3437] mean_loss : 0.138, state_loss : 0.040, gen_loss : 0.113, dom_loss : 0.011
time 603.6 min, [11/15] [2700/3437] mean_loss : 0.132, state_loss : 0.059, gen_loss : 0.082, dom_loss : 0.003
time 605.0 min, [11/15] [2800/3437] mean_loss : 0.136, state_loss : 0.008, gen_loss : 0.120, dom_loss : 0.003
time 606.4 min, [11/15] [2900/3437] mean_loss : 0.144, state_loss : 0.053, gen_loss : 0.006, dom_loss : 0.007
time 607.7 min, [11/15] [3000/3437] mean_loss : 0.131, state_loss : 0.028, gen_loss : 0.007, dom_loss : 0.067
time 609.1 min, [11/15] [3100/3437] mean_loss : 0.135, state_loss : 0.023, gen_loss : 0.024, dom_loss : 0.002
time 610.5 min, [11/15] [3200/3437] mean_loss : 0.130, state_loss : 0.004, gen_loss : 0.050, dom_loss : 0.001
time 611.9 min, [11/15] [3300/3437] mean_loss : 0.140, state_loss : 0.011, gen_loss : 0.637, dom_loss : 0.001
time 613.3 min, [11/15] [3400/3437] mean_loss : 0.122, state_loss : 0.031, gen_loss : 0.083, dom_loss : 0.000
999, 2.6min
1999, 5.2min
2999, 7.7min
3999, 10.3min
4999, 12.9min
5999, 15.4min
6999, 18.0min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 11 joint accuracy : 0.5527065527065527
Epoch 11 slot turn accuracy : 0.9751413195857195
Epoch 11 slot turn F1: 0.9256323267431082
Epoch 11 op accuracy : 0.9758422647311104
Epoch 11 op F1 : {'delete': 0.018065887353878853, 'update': 0.8305094039589844, 'dontcare': 0.28279386712095406, 'carryover': 0.9873705385312438}
Epoch 11 op hit count : {'delete': 17, 'update': 7573, 'dontcare': 83, 'carryover': 208115}
Epoch 11 op all count : {'delete': 1855, 'update': 10033, 'dontcare': 415, 'carryover': 208827}
Final Joint Accuracy : 0.383
Final slot turn F1 : 0.9148088119145642
Latency Per Prediction : 141.542178 ms
-----------------------------
hotel 0.5005417118093174 0.9744312026002298
train 0.8187216206776109 0.9928280358598253
restaurant 0.6543425183118242 0.9852691547494561
attraction 0.6918580375782881 0.9889631176061303
taxi 0.5140324963072378 0.9763663220088601
### Epoch 11 Score : {'epoch': 11, 'joint_acc': 0.5527065527065527, 'slot_acc': 0.9751413195857195, 'slot_f1': 0.9256323267431082, 'op_acc': 0.9758422647311104, 'op_f1': {'delete': 0.018065887353878853, 'update': 0.8305094039589844, 'dontcare': 0.28279386712095406, 'carryover': 0.9873705385312438}, 'final_slot_f1': 0.9148088119145642}
### Best Joint Acc: 0.5527065527065527 ###
999, 2.5min
1999, 5.0min
2999, 7.6min
3999, 10.1min
4999, 12.6min
5999, 15.1min
6999, 17.7min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 11 joint accuracy : 0.5454668838219326
Epoch 11 slot turn accuracy : 0.9744480636988307
Epoch 11 slot turn F1: 0.9219323798867022
Epoch 11 op accuracy : 0.9749411871154068
Epoch 11 op F1 : {'delete': 0.02921840759678597, 'update': 0.804844068159897, 'dontcare': 0.28912783751493426, 'carryover': 0.9869139530687635}
Epoch 11 op hit count : {'delete': 20, 'update': 7510, 'dontcare': 121, 'carryover': 207850}
Epoch 11 op all count : {'delete': 1335, 'update': 10612, 'dontcare': 650, 'carryover': 208443}
Final Joint Accuracy : 0.3863863863863864
Final slot turn F1 : 0.9150233062293927
Latency Per Prediction : 139.102310 ms
-----------------------------
hotel 0.518160741885626 0.9738021638330864
train 0.7256697185486606 0.987871594890931
restaurant 0.6804302567661347 0.9869997686791662
attraction 0.6831072749691739 0.9881490615152835
taxi 0.5607476635514018 0.9788681204569024
### Epoch 11 Test Score : {'epoch': 11, 'joint_acc': 0.5454668838219326, 'slot_acc': 0.9744480636988307, 'slot_f1': 0.9219323798867022, 'op_acc': 0.9749411871154068, 'op_f1': {'delete': 0.02921840759678597, 'update': 0.804844068159897, 'dontcare': 0.28912783751493426, 'carryover': 0.9869139530687635}, 'final_slot_f1': 0.9150233062293927}
time 651.4 min, [12/15] [0/3437] mean_loss : 0.071, state_loss : 0.019, gen_loss : 0.051, dom_loss : 0.001
time 652.8 min, [12/15] [100/3437] mean_loss : 0.119, state_loss : 0.041, gen_loss : 0.046, dom_loss : 0.001
time 654.1 min, [12/15] [200/3437] mean_loss : 0.118, state_loss : 0.041, gen_loss : 0.077, dom_loss : 0.000
time 655.5 min, [12/15] [300/3437] mean_loss : 0.115, state_loss : 0.035, gen_loss : 0.021, dom_loss : 0.009
time 656.9 min, [12/15] [400/3437] mean_loss : 0.127, state_loss : 0.026, gen_loss : 0.103, dom_loss : 0.074
time 658.3 min, [12/15] [500/3437] mean_loss : 0.101, state_loss : 0.035, gen_loss : 0.032, dom_loss : 0.000
time 659.7 min, [12/15] [600/3437] mean_loss : 0.125, state_loss : 0.018, gen_loss : 0.036, dom_loss : 0.001
time 661.0 min, [12/15] [700/3437] mean_loss : 0.125, state_loss : 0.018, gen_loss : 0.003, dom_loss : 0.000
time 662.4 min, [12/15] [800/3437] mean_loss : 0.124, state_loss : 0.024, gen_loss : 0.127, dom_loss : 0.006
time 663.8 min, [12/15] [900/3437] mean_loss : 0.122, state_loss : 0.031, gen_loss : 0.005, dom_loss : 0.008
time 665.2 min, [12/15] [1000/3437] mean_loss : 0.121, state_loss : 0.009, gen_loss : 0.066, dom_loss : 0.007
time 666.6 min, [12/15] [1100/3437] mean_loss : 0.116, state_loss : 0.017, gen_loss : 0.081, dom_loss : 0.002
time 667.9 min, [12/15] [1200/3437] mean_loss : 0.099, state_loss : 0.047, gen_loss : 0.030, dom_loss : 0.070
time 669.3 min, [12/15] [1300/3437] mean_loss : 0.122, state_loss : 0.011, gen_loss : 0.240, dom_loss : 0.005
time 670.7 min, [12/15] [1400/3437] mean_loss : 0.110, state_loss : 0.009, gen_loss : 0.010, dom_loss : 0.001
time 672.1 min, [12/15] [1500/3437] mean_loss : 0.120, state_loss : 0.039, gen_loss : 0.062, dom_loss : 0.000
time 673.5 min, [12/15] [1600/3437] mean_loss : 0.120, state_loss : 0.013, gen_loss : 0.004, dom_loss : 0.000
time 674.8 min, [12/15] [1700/3437] mean_loss : 0.118, state_loss : 0.037, gen_loss : 0.008, dom_loss : 0.000
time 676.2 min, [12/15] [1800/3437] mean_loss : 0.121, state_loss : 0.052, gen_loss : 0.038, dom_loss : 0.001
time 677.6 min, [12/15] [1900/3437] mean_loss : 0.121, state_loss : 0.031, gen_loss : 0.045, dom_loss : 0.000
time 679.0 min, [12/15] [2000/3437] mean_loss : 0.111, state_loss : 0.022, gen_loss : 0.070, dom_loss : 0.007
time 680.4 min, [12/15] [2100/3437] mean_loss : 0.122, state_loss : 0.042, gen_loss : 0.069, dom_loss : 0.001
time 681.7 min, [12/15] [2200/3437] mean_loss : 0.114, state_loss : 0.029, gen_loss : 0.024, dom_loss : 0.002
time 683.1 min, [12/15] [2300/3437] mean_loss : 0.106, state_loss : 0.063, gen_loss : 0.114, dom_loss : 0.090
time 684.5 min, [12/15] [2400/3437] mean_loss : 0.112, state_loss : 0.018, gen_loss : 0.011, dom_loss : 0.002
time 685.9 min, [12/15] [2500/3437] mean_loss : 0.127, state_loss : 0.039, gen_loss : 0.100, dom_loss : 0.001
time 687.3 min, [12/15] [2600/3437] mean_loss : 0.127, state_loss : 0.029, gen_loss : 0.121, dom_loss : 0.001
time 688.6 min, [12/15] [2700/3437] mean_loss : 0.114, state_loss : 0.008, gen_loss : 0.007, dom_loss : 0.002
time 690.0 min, [12/15] [2800/3437] mean_loss : 0.125, state_loss : 0.010, gen_loss : 0.138, dom_loss : 0.001
time 691.4 min, [12/15] [2900/3437] mean_loss : 0.108, state_loss : 0.041, gen_loss : 0.125, dom_loss : 0.001
time 692.8 min, [12/15] [3000/3437] mean_loss : 0.130, state_loss : 0.043, gen_loss : 0.361, dom_loss : 0.001
time 694.2 min, [12/15] [3100/3437] mean_loss : 0.116, state_loss : 0.026, gen_loss : 0.120, dom_loss : 0.000
time 695.6 min, [12/15] [3200/3437] mean_loss : 0.117, state_loss : 0.032, gen_loss : 0.074, dom_loss : 0.001
time 696.9 min, [12/15] [3300/3437] mean_loss : 0.124, state_loss : 0.035, gen_loss : 0.238, dom_loss : 0.000
time 698.3 min, [12/15] [3400/3437] mean_loss : 0.104, state_loss : 0.027, gen_loss : 0.003, dom_loss : 0.001
999, 2.6min
1999, 5.2min
2999, 7.8min
3999, 10.4min
4999, 13.0min
5999, 15.5min
6999, 18.1min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 12 joint accuracy : 0.5560982227648894
Epoch 12 slot turn accuracy : 0.9759869759869321
Epoch 12 slot turn F1: 0.9267941261438836
Epoch 12 op accuracy : 0.9766833989055774
Epoch 12 op F1 : {'delete': 0.021917808219178082, 'update': 0.8371068143006666, 'dontcare': 0.25817555938037867, 'carryover': 0.9878136404703807}
Epoch 12 op hit count : {'delete': 20, 'update': 7598, 'dontcare': 75, 'carryover': 208281}
Epoch 12 op all count : {'delete': 1800, 'update': 9888, 'dontcare': 441, 'carryover': 209001}
Final Joint Accuracy : 0.39
Final slot turn F1 : 0.9161668646757622
Latency Per Prediction : 142.904807 ms
-----------------------------
hotel 0.5081256771397616 0.9754062838570009
train 0.8208173244848062 0.9928978926533986
restaurant 0.6588768747820021 0.9858504825020424
attraction 0.7081419624217119 0.9896311760612448
taxi 0.51698670605613 0.9766125061546009
### Epoch 12 Score : {'epoch': 12, 'joint_acc': 0.5560982227648894, 'slot_acc': 0.9759869759869321, 'slot_f1': 0.9267941261438836, 'op_acc': 0.9766833989055774, 'op_f1': {'delete': 0.021917808219178082, 'update': 0.8371068143006666, 'dontcare': 0.25817555938037867, 'carryover': 0.9878136404703807}, 'final_slot_f1': 0.9161668646757622}
### Best Joint Acc: 0.5560982227648894 ###
999, 2.5min
1999, 5.0min
2999, 7.6min
3999, 10.1min
4999, 12.7min
5999, 15.2min
6999, 17.8min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 12 joint accuracy : 0.5481813246471227
Epoch 12 slot turn accuracy : 0.9742987694534457
Epoch 12 slot turn F1: 0.9213344605773203
Epoch 12 op accuracy : 0.974828085414358
Epoch 12 op F1 : {'delete': 0.030215827338129497, 'update': 0.8093652668886262, 'dontcare': 0.22921348314606743, 'carryover': 0.9868369193072762}
Epoch 12 op hit count : {'delete': 21, 'update': 7536, 'dontcare': 102, 'carryover': 207817}
Epoch 12 op all count : {'delete': 1359, 'update': 10536, 'dontcare': 726, 'carryover': 208419}
Final Joint Accuracy : 0.3883883883883884
Final slot turn F1 : 0.9138186936502131
Latency Per Prediction : 139.854780 ms
-----------------------------
hotel 0.5139103554868625 0.973660484286461
train 0.7209223465581553 0.9875098903583213
restaurant 0.6793893129770993 0.9868841082581622
attraction 0.6814632141389232 0.9881079599945268
taxi 0.5560747663551402 0.9791277258566947
### Epoch 12 Test Score : {'epoch': 12, 'joint_acc': 0.5481813246471227, 'slot_acc': 0.9742987694534457, 'slot_f1': 0.9213344605773203, 'op_acc': 0.974828085414358, 'op_f1': {'delete': 0.030215827338129497, 'update': 0.8093652668886262, 'dontcare': 0.22921348314606743, 'carryover': 0.9868369193072762}, 'final_slot_f1': 0.9138186936502131}
time 736.7 min, [13/15] [0/3437] mean_loss : 0.090, state_loss : 0.049, gen_loss : 0.037, dom_loss : 0.005
time 738.1 min, [13/15] [100/3437] mean_loss : 0.105, state_loss : 0.024, gen_loss : 0.136, dom_loss : 0.001
time 739.5 min, [13/15] [200/3437] mean_loss : 0.120, state_loss : 0.007, gen_loss : 0.035, dom_loss : 0.046
time 740.8 min, [13/15] [300/3437] mean_loss : 0.123, state_loss : 0.024, gen_loss : 0.122, dom_loss : 0.010
time 742.2 min, [13/15] [400/3437] mean_loss : 0.113, state_loss : 0.015, gen_loss : 0.005, dom_loss : 0.000
time 743.6 min, [13/15] [500/3437] mean_loss : 0.127, state_loss : 0.053, gen_loss : 0.123, dom_loss : 0.045
time 745.0 min, [13/15] [600/3437] mean_loss : 0.104, state_loss : 0.009, gen_loss : 0.079, dom_loss : 0.002
time 746.3 min, [13/15] [700/3437] mean_loss : 0.123, state_loss : 0.018, gen_loss : 0.141, dom_loss : 0.004
time 747.7 min, [13/15] [800/3437] mean_loss : 0.095, state_loss : 0.020, gen_loss : 0.004, dom_loss : 0.001
time 749.1 min, [13/15] [900/3437] mean_loss : 0.114, state_loss : 0.032, gen_loss : 0.014, dom_loss : 0.000
time 750.5 min, [13/15] [1000/3437] mean_loss : 0.122, state_loss : 0.016, gen_loss : 0.107, dom_loss : 0.000
time 751.9 min, [13/15] [1100/3437] mean_loss : 0.118, state_loss : 0.026, gen_loss : 0.104, dom_loss : 0.000
time 753.3 min, [13/15] [1200/3437] mean_loss : 0.111, state_loss : 0.011, gen_loss : 0.087, dom_loss : 0.002
time 754.6 min, [13/15] [1300/3437] mean_loss : 0.110, state_loss : 0.051, gen_loss : 0.131, dom_loss : 0.000
time 756.0 min, [13/15] [1400/3437] mean_loss : 0.116, state_loss : 0.016, gen_loss : 0.003, dom_loss : 0.000
time 757.4 min, [13/15] [1500/3437] mean_loss : 0.115, state_loss : 0.020, gen_loss : 0.003, dom_loss : 0.000
time 758.7 min, [13/15] [1600/3437] mean_loss : 0.133, state_loss : 0.111, gen_loss : 0.075, dom_loss : 0.064
time 760.1 min, [13/15] [1700/3437] mean_loss : 0.117, state_loss : 0.015, gen_loss : 0.030, dom_loss : 0.000
time 761.4 min, [13/15] [1800/3437] mean_loss : 0.116, state_loss : 0.022, gen_loss : 0.029, dom_loss : 0.000
time 762.8 min, [13/15] [1900/3437] mean_loss : 0.119, state_loss : 0.013, gen_loss : 0.279, dom_loss : 0.000
time 764.2 min, [13/15] [2000/3437] mean_loss : 0.113, state_loss : 0.035, gen_loss : 0.054, dom_loss : 0.128
time 765.5 min, [13/15] [2100/3437] mean_loss : 0.118, state_loss : 0.032, gen_loss : 0.002, dom_loss : 0.000
time 766.9 min, [13/15] [2200/3437] mean_loss : 0.107, state_loss : 0.009, gen_loss : 0.019, dom_loss : 0.028
time 768.3 min, [13/15] [2300/3437] mean_loss : 0.113, state_loss : 0.018, gen_loss : 0.082, dom_loss : 0.000
time 769.6 min, [13/15] [2400/3437] mean_loss : 0.112, state_loss : 0.034, gen_loss : 0.018, dom_loss : 0.000
time 771.0 min, [13/15] [2500/3437] mean_loss : 0.099, state_loss : 0.025, gen_loss : 0.031, dom_loss : 0.001
time 772.4 min, [13/15] [2600/3437] mean_loss : 0.130, state_loss : 0.018, gen_loss : 0.007, dom_loss : 0.000
time 773.7 min, [13/15] [2700/3437] mean_loss : 0.106, state_loss : 0.033, gen_loss : 0.062, dom_loss : 0.000
time 775.1 min, [13/15] [2800/3437] mean_loss : 0.122, state_loss : 0.014, gen_loss : 0.057, dom_loss : 0.001
time 776.5 min, [13/15] [2900/3437] mean_loss : 0.102, state_loss : 0.040, gen_loss : 0.004, dom_loss : 0.002
time 777.9 min, [13/15] [3000/3437] mean_loss : 0.113, state_loss : 0.030, gen_loss : 0.046, dom_loss : 0.005
time 779.2 min, [13/15] [3100/3437] mean_loss : 0.115, state_loss : 0.018, gen_loss : 0.043, dom_loss : 0.115
time 780.6 min, [13/15] [3200/3437] mean_loss : 0.097, state_loss : 0.024, gen_loss : 0.116, dom_loss : 0.000
time 782.0 min, [13/15] [3300/3437] mean_loss : 0.112, state_loss : 0.028, gen_loss : 0.062, dom_loss : 0.001
time 783.4 min, [13/15] [3400/3437] mean_loss : 0.113, state_loss : 0.022, gen_loss : 0.060, dom_loss : 0.000
999, 2.6min
1999, 5.2min
2999, 7.7min
3999, 10.3min
4999, 12.9min
5999, 15.4min
6999, 18.0min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 13 joint accuracy : 0.5555555555555556
Epoch 13 slot turn accuracy : 0.9758151313706427
Epoch 13 slot turn F1: 0.9271629382264001
Epoch 13 op accuracy : 0.9764663320218443
Epoch 13 op F1 : {'delete': 0.023772609819121448, 'update': 0.8366639141205614, 'dontcare': 0.33928571428571425, 'carryover': 0.9877087286527514}
Epoch 13 op hit count : {'delete': 23, 'update': 7599, 'dontcare': 95, 'carryover': 208209}
Epoch 13 op all count : {'delete': 1904, 'update': 9897, 'dontcare': 365, 'carryover': 208964}
Final Joint Accuracy : 0.389
Final slot turn F1 : 0.9170482357174824
Latency Per Prediction : 141.703959 ms
-----------------------------
hotel 0.5092091007583965 0.9753701697363794
train 0.8124345092560251 0.9925602514844617
restaurant 0.6613184513428672 0.9857574700616283
attraction 0.7064718162839249 0.9895894224078002
taxi 0.5361890694239291 0.9765632693254532
### Epoch 13 Score : {'epoch': 13, 'joint_acc': 0.5555555555555556, 'slot_acc': 0.9758151313706427, 'slot_f1': 0.9271629382264001, 'op_acc': 0.9764663320218443, 'op_f1': {'delete': 0.023772609819121448, 'update': 0.8366639141205614, 'dontcare': 0.33928571428571425, 'carryover': 0.9877087286527514}, 'final_slot_f1': 0.9170482357174824}
time 802.9 min, [14/15] [0/3437] mean_loss : 0.147, state_loss : 0.035, gen_loss : 0.111, dom_loss : 0.001
time 804.2 min, [14/15] [100/3437] mean_loss : 0.114, state_loss : 0.040, gen_loss : 0.077, dom_loss : 0.004
time 805.6 min, [14/15] [200/3437] mean_loss : 0.111, state_loss : 0.028, gen_loss : 0.007, dom_loss : 0.001
time 807.0 min, [14/15] [300/3437] mean_loss : 0.117, state_loss : 0.017, gen_loss : 0.080, dom_loss : 0.001
time 808.4 min, [14/15] [400/3437] mean_loss : 0.102, state_loss : 0.021, gen_loss : 0.322, dom_loss : 0.001
time 809.8 min, [14/15] [500/3437] mean_loss : 0.111, state_loss : 0.021, gen_loss : 0.125, dom_loss : 0.001
time 811.1 min, [14/15] [600/3437] mean_loss : 0.119, state_loss : 0.028, gen_loss : 0.083, dom_loss : 0.000
time 812.5 min, [14/15] [700/3437] mean_loss : 0.111, state_loss : 0.009, gen_loss : 0.034, dom_loss : 0.000
time 813.9 min, [14/15] [800/3437] mean_loss : 0.096, state_loss : 0.035, gen_loss : 0.121, dom_loss : 0.000
time 815.3 min, [14/15] [900/3437] mean_loss : 0.096, state_loss : 0.041, gen_loss : 0.056, dom_loss : 0.012
time 816.7 min, [14/15] [1000/3437] mean_loss : 0.104, state_loss : 0.023, gen_loss : 0.100, dom_loss : 0.031
time 818.1 min, [14/15] [1100/3437] mean_loss : 0.095, state_loss : 0.020, gen_loss : 0.033, dom_loss : 0.000
time 819.4 min, [14/15] [1200/3437] mean_loss : 0.111, state_loss : 0.060, gen_loss : 0.124, dom_loss : 0.001
time 820.8 min, [14/15] [1300/3437] mean_loss : 0.115, state_loss : 0.008, gen_loss : 0.105, dom_loss : 0.000
time 822.2 min, [14/15] [1400/3437] mean_loss : 0.097, state_loss : 0.019, gen_loss : 0.135, dom_loss : 0.001
time 823.6 min, [14/15] [1500/3437] mean_loss : 0.107, state_loss : 0.018, gen_loss : 0.003, dom_loss : 0.055
time 824.9 min, [14/15] [1600/3437] mean_loss : 0.115, state_loss : 0.011, gen_loss : 0.064, dom_loss : 0.038
time 826.3 min, [14/15] [1700/3437] mean_loss : 0.107, state_loss : 0.018, gen_loss : 0.044, dom_loss : 0.061
time 827.7 min, [14/15] [1800/3437] mean_loss : 0.105, state_loss : 0.024, gen_loss : 0.032, dom_loss : 0.009
time 829.1 min, [14/15] [1900/3437] mean_loss : 0.099, state_loss : 0.044, gen_loss : 0.147, dom_loss : 0.000
time 830.5 min, [14/15] [2000/3437] mean_loss : 0.100, state_loss : 0.023, gen_loss : 0.043, dom_loss : 0.067
time 831.8 min, [14/15] [2100/3437] mean_loss : 0.105, state_loss : 0.034, gen_loss : 0.008, dom_loss : 0.002
time 833.2 min, [14/15] [2200/3437] mean_loss : 0.113, state_loss : 0.016, gen_loss : 0.085, dom_loss : 0.000
time 834.6 min, [14/15] [2300/3437] mean_loss : 0.123, state_loss : 0.021, gen_loss : 0.055, dom_loss : 0.001
time 836.0 min, [14/15] [2400/3437] mean_loss : 0.098, state_loss : 0.020, gen_loss : 0.003, dom_loss : 0.001
time 837.3 min, [14/15] [2500/3437] mean_loss : 0.088, state_loss : 0.038, gen_loss : 0.028, dom_loss : 0.000
time 838.7 min, [14/15] [2600/3437] mean_loss : 0.091, state_loss : 0.028, gen_loss : 0.117, dom_loss : 0.001
time 840.1 min, [14/15] [2700/3437] mean_loss : 0.107, state_loss : 0.050, gen_loss : 0.023, dom_loss : 0.024
time 841.5 min, [14/15] [2800/3437] mean_loss : 0.121, state_loss : 0.030, gen_loss : 0.175, dom_loss : 0.109
time 842.9 min, [14/15] [2900/3437] mean_loss : 0.120, state_loss : 0.022, gen_loss : 0.015, dom_loss : 0.070
time 844.3 min, [14/15] [3000/3437] mean_loss : 0.106, state_loss : 0.016, gen_loss : 0.053, dom_loss : 0.001
time 845.6 min, [14/15] [3100/3437] mean_loss : 0.124, state_loss : 0.044, gen_loss : 0.140, dom_loss : 0.000
time 847.0 min, [14/15] [3200/3437] mean_loss : 0.109, state_loss : 0.037, gen_loss : 0.064, dom_loss : 0.000
time 848.4 min, [14/15] [3300/3437] mean_loss : 0.097, state_loss : 0.015, gen_loss : 0.117, dom_loss : 0.001
time 849.8 min, [14/15] [3400/3437] mean_loss : 0.104, state_loss : 0.019, gen_loss : 0.002, dom_loss : 0.050
999, 2.6min
1999, 5.1min
2999, 7.7min
3999, 10.3min
4999, 12.8min
5999, 15.4min
6999, 17.9min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 14 joint accuracy : 0.5573192239858906
Epoch 14 slot turn accuracy : 0.9759688870799539
Epoch 14 slot turn F1: 0.9279664731446196
Epoch 14 op accuracy : 0.9766381766381337
Epoch 14 op F1 : {'delete': 0.020629190304280558, 'update': 0.8388128861429833, 'dontcare': 0.344582593250444, 'carryover': 0.9878044731162393}
Epoch 14 op hit count : {'delete': 20, 'update': 7603, 'dontcare': 97, 'carryover': 208244}
Epoch 14 op all count : {'delete': 1910, 'update': 9869, 'dontcare': 359, 'carryover': 208992}
Final Joint Accuracy : 0.394
Final slot turn F1 : 0.9183246106480932
Latency Per Prediction : 141.057384 ms
-----------------------------
hotel 0.5081256771397616 0.9754664740580354
train 0.8187216206776109 0.992862964256612
restaurant 0.6623648412975236 0.9859318683874043
attraction 0.6947807933194154 0.9890327070285382
taxi 0.5391432791728212 0.9776464795667136
### Epoch 14 Score : {'epoch': 14, 'joint_acc': 0.5573192239858906, 'slot_acc': 0.9759688870799539, 'slot_f1': 0.9279664731446196, 'op_acc': 0.9766381766381337, 'op_f1': {'delete': 0.020629190304280558, 'update': 0.8388128861429833, 'dontcare': 0.344582593250444, 'carryover': 0.9878044731162393}, 'final_slot_f1': 0.9183246106480932}
### Best Joint Acc: 0.5573192239858906 ###
999, 2.4min
1999, 4.9min
2999, 7.5min
3999, 10.0min
4999, 12.5min
5999, 15.1min
6999, 17.6min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 14 joint accuracy : 0.5507600434310532
Epoch 14 slot turn accuracy : 0.9752669200144269
Epoch 14 slot turn F1: 0.9239486126122161
Epoch 14 op accuracy : 0.9757826637712135
Epoch 14 op F1 : {'delete': 0.031724137931034485, 'update': 0.8132708568966446, 'dontcare': 0.353393085787452, 'carryover': 0.9873481420995913}
Epoch 14 op hit count : {'delete': 23, 'update': 7550, 'dontcare': 138, 'carryover': 207976}
Epoch 14 op all count : {'delete': 1415, 'update': 10456, 'dontcare': 560, 'carryover': 208609}
Final Joint Accuracy : 0.3913913913913914
Final slot turn F1 : 0.9160109071514932
Latency Per Prediction : 138.394800 ms
-----------------------------
hotel 0.5158423493044823 0.97456208140135
train 0.7293997965412004 0.9877359556912021
restaurant 0.6918806384455239 0.9874971084894825
attraction 0.7081792026304973 0.9892314015618644
taxi 0.5467289719626168 0.9793354101765288
### Epoch 14 Test Score : {'epoch': 14, 'joint_acc': 0.5507600434310532, 'slot_acc': 0.9752669200144269, 'slot_f1': 0.9239486126122161, 'op_acc': 0.9757826637712135, 'op_f1': {'delete': 0.031724137931034485, 'update': 0.8132708568966446, 'dontcare': 0.353393085787452, 'carryover': 0.9873481420995913}, 'final_slot_f1': 0.9160109071514932}
time 887.7 min, [15/15] [0/3437] mean_loss : 0.051, state_loss : 0.049, gen_loss : 0.002, dom_loss : 0.000
time 889.1 min, [15/15] [100/3437] mean_loss : 0.110, state_loss : 0.005, gen_loss : 0.042, dom_loss : 0.003
time 890.4 min, [15/15] [200/3437] mean_loss : 0.109, state_loss : 0.010, gen_loss : 0.024, dom_loss : 0.001
time 891.8 min, [15/15] [300/3437] mean_loss : 0.097, state_loss : 0.014, gen_loss : 0.102, dom_loss : 0.000
time 893.2 min, [15/15] [400/3437] mean_loss : 0.092, state_loss : 0.073, gen_loss : 0.031, dom_loss : 0.000
time 894.6 min, [15/15] [500/3437] mean_loss : 0.104, state_loss : 0.025, gen_loss : 0.161, dom_loss : 0.000
time 896.0 min, [15/15] [600/3437] mean_loss : 0.098, state_loss : 0.031, gen_loss : 0.028, dom_loss : 0.036
time 897.3 min, [15/15] [700/3437] mean_loss : 0.095, state_loss : 0.009, gen_loss : 0.102, dom_loss : 0.000
time 898.7 min, [15/15] [800/3437] mean_loss : 0.096, state_loss : 0.014, gen_loss : 0.132, dom_loss : 0.000
time 900.1 min, [15/15] [900/3437] mean_loss : 0.097, state_loss : 0.012, gen_loss : 0.012, dom_loss : 0.000
time 901.5 min, [15/15] [1000/3437] mean_loss : 0.104, state_loss : 0.016, gen_loss : 0.062, dom_loss : 0.000
time 902.9 min, [15/15] [1100/3437] mean_loss : 0.102, state_loss : 0.047, gen_loss : 0.134, dom_loss : 0.066
time 904.2 min, [15/15] [1200/3437] mean_loss : 0.099, state_loss : 0.026, gen_loss : 0.032, dom_loss : 0.000
time 905.6 min, [15/15] [1300/3437] mean_loss : 0.105, state_loss : 0.025, gen_loss : 0.118, dom_loss : 0.001
time 907.0 min, [15/15] [1400/3437] mean_loss : 0.106, state_loss : 0.036, gen_loss : 0.185, dom_loss : 0.000
time 908.4 min, [15/15] [1500/3437] mean_loss : 0.103, state_loss : 0.017, gen_loss : 0.022, dom_loss : 0.001
time 909.8 min, [15/15] [1600/3437] mean_loss : 0.113, state_loss : 0.047, gen_loss : 0.129, dom_loss : 0.003
time 911.1 min, [15/15] [1700/3437] mean_loss : 0.104, state_loss : 0.012, gen_loss : 0.079, dom_loss : 0.000
time 912.5 min, [15/15] [1800/3437] mean_loss : 0.108, state_loss : 0.035, gen_loss : 0.032, dom_loss : 0.012
time 913.9 min, [15/15] [1900/3437] mean_loss : 0.109, state_loss : 0.018, gen_loss : 0.065, dom_loss : 0.001
time 915.3 min, [15/15] [2000/3437] mean_loss : 0.100, state_loss : 0.039, gen_loss : 0.019, dom_loss : 0.001
time 916.7 min, [15/15] [2100/3437] mean_loss : 0.088, state_loss : 0.029, gen_loss : 0.019, dom_loss : 0.000
time 918.0 min, [15/15] [2200/3437] mean_loss : 0.109, state_loss : 0.037, gen_loss : 0.171, dom_loss : 0.000
time 919.4 min, [15/15] [2300/3437] mean_loss : 0.092, state_loss : 0.010, gen_loss : 0.003, dom_loss : 0.040
time 920.8 min, [15/15] [2400/3437] mean_loss : 0.097, state_loss : 0.022, gen_loss : 0.069, dom_loss : 0.000
time 922.2 min, [15/15] [2500/3437] mean_loss : 0.102, state_loss : 0.030, gen_loss : 0.004, dom_loss : 0.000
time 923.6 min, [15/15] [2600/3437] mean_loss : 0.107, state_loss : 0.034, gen_loss : 0.006, dom_loss : 0.001
time 924.9 min, [15/15] [2700/3437] mean_loss : 0.102, state_loss : 0.047, gen_loss : 0.086, dom_loss : 0.003
time 926.3 min, [15/15] [2800/3437] mean_loss : 0.117, state_loss : 0.019, gen_loss : 0.121, dom_loss : 0.005
time 927.7 min, [15/15] [2900/3437] mean_loss : 0.110, state_loss : 0.032, gen_loss : 0.016, dom_loss : 0.003
time 929.1 min, [15/15] [3000/3437] mean_loss : 0.096, state_loss : 0.012, gen_loss : 0.001, dom_loss : 0.000
time 930.4 min, [15/15] [3100/3437] mean_loss : 0.093, state_loss : 0.021, gen_loss : 0.143, dom_loss : 0.001
time 931.8 min, [15/15] [3200/3437] mean_loss : 0.103, state_loss : 0.004, gen_loss : 0.088, dom_loss : 0.001
time 933.2 min, [15/15] [3300/3437] mean_loss : 0.104, state_loss : 0.046, gen_loss : 0.007, dom_loss : 0.028
time 934.6 min, [15/15] [3400/3437] mean_loss : 0.092, state_loss : 0.014, gen_loss : 0.054, dom_loss : 0.000
999, 2.6min
1999, 5.2min
2999, 7.7min
3999, 10.3min
4999, 12.9min
5999, 15.4min
6999, 18.0min
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 15 joint accuracy : 0.564645231311898
Epoch 15 slot turn accuracy : 0.9762854429520665
Epoch 15 slot turn F1: 0.9285475650096263
Epoch 15 op accuracy : 0.976945688056757
Epoch 15 op F1 : {'delete': 0.023206751054852322, 'update': 0.8400309119010818, 'dontcare': 0.3381294964028777, 'carryover': 0.987958035722755}
Epoch 15 op hit count : {'delete': 22, 'update': 7609, 'dontcare': 94, 'carryover': 208307}
Epoch 15 op all count : {'delete': 1868, 'update': 9841, 'dontcare': 368, 'carryover': 209053}
Final Joint Accuracy : 0.399
Final slot turn F1 : 0.9183407613318462
Latency Per Prediction : 141.530687 ms
-----------------------------
hotel 0.5211267605633803 0.9760322619477667
train 0.8208173244848062 0.9928047502619676
restaurant 0.6679455877223579 0.986164399488439
attraction 0.6997912317327766 0.9892832289492061
taxi 0.5332348596750369 0.9771541112752318
### Epoch 15 Score : {'epoch': 15, 'joint_acc': 0.564645231311898, 'slot_acc': 0.9762854429520665, 'slot_f1': 0.9285475650096263, 'op_acc': 0.976945688056757, 'op_f1': {'delete': 0.023206751054852322, 'update': 0.8400309119010818, 'dontcare': 0.3381294964028777, 'carryover': 0.987958035722755}, 'final_slot_f1': 0.9183407613318462}
### Best Joint Acc: 0.564645231311898 ###
999, 2.5min
1999, 4.9min
2999, 7.6min
3999, 10.0min
4999, 12.6min
5999, 15.1min
6999, 17.6min
/pytorch/torch/csrc/utils/python_arg_parser.cpp:756: UserWarning: This overload of add_ is deprecated:
add_(Number alpha, Tensor other)
Consider using one of the following signatures instead:
add_(Tensor other, *, Number alpha)
------------------------------
op_code: 4, is_gt_op: False, is_gt_p_state: False, is_gt_gen: False
Epoch 15 joint accuracy : 0.5534744842562432
Epoch 15 slot turn accuracy : 0.9756740861382059
Epoch 15 slot turn F1: 0.9249954757030874
Epoch 15 op accuracy : 0.9762079261671601
Epoch 15 op F1 : {'delete': 0.034934497816593885, 'update': 0.8153223630968437, 'dontcare': 0.32997481108312343, 'carryover': 0.9875716994520346}
Epoch 15 op hit count : {'delete': 24, 'update': 7556, 'dontcare': 131, 'carryover': 208070}
Epoch 15 op all count : {'delete': 1338, 'update': 10430, 'dontcare': 592, 'carryover': 208680}
Final Joint Accuracy : 0.39039039039039036
Final slot turn F1 : 0.9166763820537805
Latency Per Prediction : 138.790865 ms
-----------------------------
hotel 0.5200927357032458 0.9753219989696136
train 0.7239742285520515 0.9874759805583887
restaurant 0.6953504510756419 0.9876127689104863
attraction 0.7110563090834361 0.9893821071379706
taxi 0.559190031152648 0.9795430944963626
### Epoch 15 Test Score : {'epoch': 15, 'joint_acc': 0.5534744842562432, 'slot_acc': 0.9756740861382059, 'slot_f1': 0.9249954757030874, 'op_acc': 0.9762079261671601, 'op_f1': {'delete': 0.034934497816593885, 'update': 0.8153223630968437, 'dontcare': 0.32997481108312343, 'carryover': 0.9875716994520346}, 'final_slot_f1': 0.9166763820537805}