-
Notifications
You must be signed in to change notification settings - Fork 19
/
loss.py
executable file
·238 lines (170 loc) · 10.1 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import numpy as np
import tensorflow as tf
import tfutil
#----------------------------------------------------------------------------
# Convenience func that casts all of its arguments to tf.float32.
def fp32(*values):
if len(values) == 1 and isinstance(values[0], tuple):
values = values[0]
values = tuple(tf.cast(v, tf.float32) for v in values)
return values if len(values) >= 2 else values[0]
#----------------------------------------------------------------------------
# Extract (ws x ws) patches from a tensor
def extract_patches(matrix, ws, h, w):
val = []
for yo in range(ws):
for xo in range(ws):
MN = matrix[:, yo:yo+h-ws+1, xo:xo+w-ws+1, :]
val.append(MN)
win_ids = tf.stack(val, 3)
return win_ids
#----------------------------------------------------------------------------
# Compute structural loss
def structural_loss(fake1, fake2):
eps = 1e-4
win_rad = 1
win_size = (win_rad * 2 + 1) ** 2
b, d, h, w = fake1.get_shape().as_list()
c_h, c_w = h - 2 * win_rad, w - 2 * win_rad
win_diam = win_rad * 2 + 1
indsM = tf.reshape(tf.range(h * w), [1, h, w, 1])
win_ids = extract_patches(indsM, win_rad * 2 + 1, h, w)
A = tf.reshape(win_ids, [-1, 9, 1])
A = tf.tile(A, [1, 1, 9])
col = tf.transpose(A, [0, 2, 1])
col = tf.cast(tf.reshape(col, [-1]), tf.int64)
row = tf.cast(tf.reshape(A, [-1]), tf.int64)
def laplacian_matrix(img):
temp = tf.transpose(img, [0, 2, 3, 1])
winI = extract_patches(temp, win_rad * 2 + 1, h, w)
winI = tf.reshape(winI, [-1, (h-2)*(w-2), 9, 3])
win_mu = tf.reduce_mean(winI, axis=2, keep_dims=True)
term1 = tf.matmul(tf.transpose(winI, [0,1,3,2]), winI)
term2 = tf.matmul(tf.transpose(win_mu, [0,1,3,2]), win_mu)
win_var = term1 / win_size - term2
inv = tf.linalg.inv(win_var + (eps/win_size) * tf.eye(3))
X = tf.matmul(winI - win_mu, inv)
vals = tf.eye(win_size) - (1.0/win_size)*(1 + tf.matmul(X, tf.transpose(winI - win_mu, [0,1,3,2])))
vals = tf.layers.flatten(vals)
SM = tf.SparseTensor(indices=tf.stack([row, col], 1), values=vals[0], dense_shape=[h*w, h*w])
return SM
def condition(i, loss):
return tf.less(i, tf.shape(fake1)[0])
def action(i, loss):
slice1 = fake1[i:i+1]
slice2 = fake2[i:i+1]
L1 = laplacian_matrix(slice1)
L2 = laplacian_matrix(slice2)
size = fake1.get_shape().as_list()[2]
temp = tf.reshape(slice1, [3, -1])
covariance = tf.matmul(temp, tf.sparse_tensor_dense_matmul(L2, tf.transpose(temp))) / size**2
str_loss_1 = tf.trace(covariance)
temp = tf.reshape(slice2, [3, -1])
covariance = tf.matmul(temp, tf.sparse_tensor_dense_matmul(L1, tf.transpose(temp))) / size**2
str_loss_2 = tf.trace(covariance)
str_loss_1 = tf.reshape(str_loss_1, [1,1])
str_loss_2 = tf.reshape(str_loss_2, [1,1])
loss = tf.concat([loss, str_loss_1, str_loss_2], axis=0)
return tf.add(i, 1), loss
i = tf.constant(0)
loss = tf.Variable(np.zeros((0,1), dtype=np.float32))
final_index, loss = tf.while_loop(condition, action, [i, loss], shape_invariants=[i.get_shape(), tf.TensorShape([None,1])])
return loss
#----------------------------------------------------------------------------
# Repeat tensors
def tf_repeat(tensor, repeats):
expanded_tensor = tf.expand_dims(tensor, -1)
multiples = [1] + repeats
tiled_tensor = tf.tile(expanded_tensor, multiples = multiples)
repeated_tensor = tf.reshape(tiled_tensor, tf.shape(tensor) * repeats)
return repeated_tensor
#----------------------------------------------------------------------------
# Generator loss function used in the paper (WGAN + AC-GAN).
def G_wgan_acgan(G, D, opt, training_set, minibatch_size, real_masks,
cond_weight = 1.0, **kwargs): # Weight of the conditioning term.
latents = tf.random_normal([2] + G.input_shapes[0][1:])
labels = tf.random_uniform([2, 3], minval=-1.0, maxval=1.0)
repeated_latents = tf_repeat(latents, [4, 1])
repeated_labels = tf.tile(tf_repeat(labels, [2, 1]), [2, 1])
repeated_masks = tf.tile(real_masks[:2], [4, 1, 1, 1])
fake_images_out = G.get_output_for(repeated_latents, repeated_labels, repeated_masks, is_training=True)
scaled_masks = repeated_masks * 0.5 + 0.5
masked_colors = tf.reduce_sum(fake_images_out * scaled_masks, axis=[2, 3]) / (tf.reduce_sum(scaled_masks, axis=[2, 3]) + 1e-8)
fake_scores_out, fake_labels_out = fp32(D.get_output_for(fake_images_out, is_training=True))
loss = -fake_scores_out
WT = kwargs["weights"]
if D.output_shapes[1][1] > 0:
with tf.name_scope('LabelPenalty'):
label_penalty_fakes = tf.reduce_sum(tf.squared_difference(repeated_labels, fake_labels_out), axis=1, keep_dims=True)
label_penalty_fakes = tfutil.autosummary('Loss/label_penalty_fakes', label_penalty_fakes)
loss += label_penalty_fakes * cond_weight
if WT["generator_color_check"] > 0:
with tf.name_scope('GeneratorColorCheck'):
generator_color_check = WT["generator_color_check"] * tf.reduce_sum(tf.squared_difference(repeated_labels, masked_colors), axis=1, keep_dims=True)
generator_color_check = tfutil.autosummary('Loss/generator_color_check', generator_color_check)
loss += generator_color_check
if WT["color_consistency"] > 0:
with tf.name_scope('ColorConsistency'):
colors_1, colors_2 = tf.dynamic_partition(masked_colors, [0, 0, 0, 0, 1, 1, 1, 1], 2)
color_consistency = WT["color_consistency"] * tf.reduce_sum(tf.squared_difference(colors_1, colors_2), axis=1, keep_dims=True)
color_consistency = tf.tile(color_consistency, [2, 1])
color_consistency = tfutil.autosummary('Loss/color_consistency', color_consistency)
loss += color_consistency
if WT["texture_consistency"] > 0:
with tf.name_scope('TextureConsistency'):
fake_images_1, fake_images_2 = tf.dynamic_partition(fake_images_out, [0, 0, 1, 1, 0, 0, 1, 1], 2)
texture_consistency = WT["texture_consistency"] * structural_loss(fake_images_1, fake_images_2)
texture_consistency = tfutil.autosummary('Loss/texture_consistency', texture_consistency)
loss += texture_consistency
if WT["shape_consistency"] > 0:
with tf.name_scope('ShapeConsistency'):
mask_complement = 1.0 - scaled_masks
masked_difference = tf.reduce_sum(tf.abs(fake_images_out - 1.0) * mask_complement, axis=[1, 2, 3]) / (tf.reduce_sum(mask_complement, axis=[1, 2, 3]) + 1e-8)
shape_consistency = WT["shape_consistency"] * masked_difference
shape_consistency = tfutil.autosummary('Loss/shape_consistency', shape_consistency)
loss += shape_consistency
return loss
#----------------------------------------------------------------------------
# Discriminator loss function used in the paper (WGAN-GP + AC-GAN).
def D_wgangp_acgan(G, D, opt, training_set, minibatch_size, reals, labels, real_masks,
wgan_lambda = 10.0, # Weight for the gradient penalty term.
wgan_epsilon = 0.001, # Weight for the epsilon term, \epsilon_{drift}.
wgan_target = 1.0, # Target value for gradient magnitudes.
cond_weight = 1.0, # Weight of the conditioning terms.
**kwargs):
latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
fake_images_out = G.get_output_for(latents, labels, real_masks, is_training=True)
real_scores_out, real_labels_out = fp32(D.get_output_for(reals, is_training=True))
fake_scores_out, fake_labels_out = fp32(D.get_output_for(fake_images_out, is_training=True))
real_scores_out = tfutil.autosummary('Loss/real_scores', real_scores_out)
fake_scores_out = tfutil.autosummary('Loss/fake_scores', fake_scores_out)
loss = fake_scores_out - real_scores_out
with tf.name_scope('GradientPenalty'):
mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype)
mixed_images_out = tfutil.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors)
mixed_scores_out, mixed_labels_out = fp32(D.get_output_for(mixed_images_out, is_training=True))
mixed_scores_out = tfutil.autosummary('Loss/mixed_scores', mixed_scores_out)
mixed_loss = opt.apply_loss_scaling(tf.reduce_sum(mixed_scores_out))
mixed_grads = opt.undo_loss_scaling(fp32(tf.gradients(mixed_loss, [mixed_images_out])[0]))
mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3]))
mixed_norms = tfutil.autosummary('Loss/mixed_norms', mixed_norms)
gradient_penalty = tf.square(mixed_norms - wgan_target)
loss += gradient_penalty * (wgan_lambda / (wgan_target**2))
with tf.name_scope('EpsilonPenalty'):
epsilon_penalty = tfutil.autosummary('Loss/epsilon_penalty', tf.square(real_scores_out))
loss += epsilon_penalty * wgan_epsilon
if D.output_shapes[1][1] > 0:
with tf.name_scope('LabelPenalty'):
label_penalty_reals = tf.reduce_sum(tf.squared_difference(labels, real_labels_out), axis=1)
label_penalty_fakes = tf.reduce_sum(tf.squared_difference(labels, fake_labels_out), axis=1)
label_penalty_reals = tfutil.autosummary('Loss/label_penalty_reals', label_penalty_reals)
label_penalty_fakes = tfutil.autosummary('Loss/label_penalty_fakes', label_penalty_fakes)
loss += (label_penalty_reals + label_penalty_fakes) * cond_weight
return loss
#----------------------------------------------------------------------------