-
Notifications
You must be signed in to change notification settings - Fork 9
Description
System Info / 系統信息
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.11.10 (main, Sep 9 2024, 23:51:30) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA RTX A5000
Nvidia driver version: 535.230.02
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 40 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Vendor ID: AuthenticAMD
Model name: AMD EPYC-Rome Processor
CPU family: 23
Model: 49
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 1
Stepping: 0
BogoMIPS: 6000.01
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid amd_dcm tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr wbnoinvd arat npt nrip_save umip rdpid arch_capabilities
Virtualization: AMD-V
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 512 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 8 MiB (16 instances)
L3 cache: 64 MiB (4 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==2.2.5
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-15 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=11.8 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471
NCCL_VERSION=2.15.5-1
NVIDIA_DRIVER_CAPABILITIES=all
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=11.8.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/lib/x86_64-linux-gnu:/usr/local/nvidia/lib64:/usr/local/nvidia/bin
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
Who can help? / 谁可以帮助到您?
No response
Information / 问题信息
- The official example scripts / 官方的示例脚本
- My own modified scripts / 我自己修改的脚本和任务
Reproduction / 复现过程
subprocess.Popen([
"vllm",
"serve",
"/src/glm-edge-v-2b",
"--tensor-parallel-size", "1",
"--max-model-len", "4096",
"--enforce-eager"], close_fds=False)
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/executor/uniproc_executor.py", line 47, in _init_executor
self.collective_rpc("load_model")
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/executor/uniproc_executor.py", line 56, in collective_rpc
answer = run_method(self.driver_worker, method, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/utils.py", line 2378, in run_method
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/worker/worker.py", line 183, in load_model
self.model_runner.load_model()
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1113, in load_model
self.model = get_model(vllm_config=self.vllm_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/model_loader/init.py", line 14, in get_model
return loader.load_model(vllm_config=vllm_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/model_loader/loader.py", line 455, in load_model
loaded_weights = model.load_weights(
^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/models/llama.py", line 566, in load_weights
return loader.load_weights(
^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 261, in load_weights
autoloaded_weights = set(self._load_module("", self.module, weights))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 222, in _load_module
yield from self._load_module(prefix,
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 195, in _load_module
loaded_params = module_load_weights(weights)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/.pyenv/versions/3.11.10/lib/python3.11/site-packages/vllm/model_executor/models/llama.py", line 430, in load_weights
param = params_dict[name]
~~~~~~~~~~~^^^^^^
KeyError: 'vision.adapter.boi'
Loading safetensors checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]
Expected behavior / 期待表现
fix