forked from sharib-vision/PolypGen-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsharpen.py
562 lines (450 loc) · 20.8 KB
/
sharpen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
from tqdm import tqdm
import network
import utils
import os
import random
import argparse
import numpy as np
import torch.nn.functional as F
from torch.utils import data
import wandb
from datasets import VOCSegmentation_polypGen2021 as polyGenSeg
from utils import ext_transforms as et
from metrics import StreamSegMetrics
from pytorch_pcgrad.pcgrad import PCGrad
import torch
import torch.nn as nn
from utils.visualizer import Visualizer
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
from skimage.transform import resize
from collections import OrderedDict
import random
import string
def plotInference( imgs, depth):
f = plt.figure()
f.add_subplot(1,2, 1)
plt.imshow(resize((imgs), (256, 256)))
f.add_subplot(1,2, 2)
depth_masked = resize(depth, (256, 256))
plt.imshow(depth_masked)
# plt.show(block=True)
return f
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument("--dev_run", type=bool, default=False,
help='does not save checkpoints or log metrics when in dev mode')
parser.add_argument("--model_desc", type=str, default='',
help="description of baseline Bayesian model")
# debiasing options
parser.add_argument("--sharpen", type=str, default=False,
help="use posterior sharpening method during training")
parser.add_argument("--kappa", type=float, default=2.0,
help="weighting scalar")
parser.add_argument("--loss_type", type=str, default="pcgrad",
choices=['pcgrad', 'sharpen'],
help="multi-task loss")
parser.add_argument("--max_epochs", type=int, default=20,
help="max epochs to sharpen for")
parser.add_argument("--lr", type=float, default=0.1,
help="lr")
parser.add_argument("--total_epochs", type=int, default=10,
help="epochs to run")
parser.add_argument("--moment_count", type=int, default=2,
help="model moments to use")
# Dataset Options
parser.add_argument("--root", type=str, default="",
help='absolute path to EndoCV2021')
parser.add_argument("--data_root", type=str, default='EndoCV2021/trainData_polypGen/',
help="path to Dataset")
parser.add_argument("--dataType", type=str, default='polypGen',
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='polypGen',
choices=['polypGen'], help='Name of dataset')
parser.add_argument("--num_classes", type=int, default=2,
help="num classes (default: None)")
parser.add_argument("--download", action='store_true', default=False,
help="download datasets")
# Deeplab Options
parser.add_argument("--model", type=str, default='deeplabv3plus_resnet50',
choices=['deeplabv3_resnet50', 'deeplabv3plus_resnet50',
'deeplabv3_resnet101', 'deeplabv3plus_resnet101',
'deeplabv3_mobilenet', 'deeplabv3plus_mobilenet', 'pspNet', 'segNet', 'FCN8', 'resnet-Unet', 'axial', 'unet'], help='model name')
# if unet backbone
parser.add_argument("--backbone", type=str, default='resnet50',
choices=['vgg19', 'resnet34' , 'resnet50',
'resnet101', 'densenet121', 'none'], help='model name')
parser.add_argument("--separable_conv", action='store_true', default=False,
help="apply separable conv to decoder and aspp")
parser.add_argument("--output_stride", type=int, default=16, choices=[8, 16])
# Train Options
parser.add_argument("--test_only", action='store_true', default=False)
parser.add_argument("--save_val_results", action='store_true', default=True,
help="save segmentation results to \"./results_polypGen\"")
parser.add_argument("--lr_policy", type=str, default='poly', choices=['poly', 'step'],
help="learning rate scheduler policy")
parser.add_argument("--step_size", type=int, default=10000)
parser.add_argument("--crop_val", action='store_true', default=False,
help='crop validation (default: False)')
parser.add_argument("--batch_size", type=int, default=16,
help='batch size (default: 16)')
parser.add_argument("--val_batch_size", type=int, default=16,
help='batch size for validation (default: 4)')
parser.add_argument("--crop_size", type=int, default=512)
parser.add_argument("--ckpt", default=None, type=str,
help="restore from checkpoint")
parser.add_argument("--continue_training", action='store_true', default=False)
parser.add_argument("--gpu_id", type=str, default='0',
help="GPU ID")
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--random_seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=100,
help="epoch interval for eval (default: 100)")
parser.add_argument("--log_masks_wandb", default=False,
help="log --vis_num_samples samples during training on wandb")
# Visdom options
parser.add_argument("--enable_vis", action='store_true', default=False,
help="use visdom for visualization")
parser.add_argument("--vis_port", type=str, default='13570',
help='port for visdom')
parser.add_argument("--vis_env", type=str, default='main',
help='env for visdom')
parser.add_argument("--vis_num_samples", type=int, default=8,
help='number of samples for visualization (default: 8)')
return parser
def get_dataset(opts):
""" Dataset And Augmentation
"""
if opts.dataset == 'polypGen':
train_transform = et.ExtCompose([
et.ExtRandomScale((0.5, 2.0)),
et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.crop_val:
val_transform = et.ExtCompose([
et.ExtResize(opts.crop_size),
et.ExtCenterCrop(opts.crop_size),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
else:
val_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = polyGenSeg(
root=f"{opts.root}datasets/{opts.data_root}",
image_set='train_polypGen',
download=opts.download,
indices=True,
transform=train_transform,
)
val_dst = polyGenSeg(
root=f"{opts.root}datasets/{opts.data_root}",
image_set='val_polypGen',
download=False,
indices=True,
transform=val_transform
)
return train_dst, val_dst
def main():
torch.cuda.is_available()
torch.cuda.device_count()
opts = get_argparser().parse_args()
if opts.dataset.lower() == 'voc':
opts.num_classes = 2 # foreground + background
project_name = "sharpen"
if not opts.dev_run:
wandb.init(
project=project_name,
config={
"name": opts.model_desc,
"learning_rate": opts.lr,
"max_epochs": opts.max_epochs,
}
)
print(f"Running new experiment under {project_name} named: {wandb.run.name}")
model_desc = wandb.run.name
# if os.path.exists(f"moments/{model_desc}"):
# print("[ERROR] {model_desc} already exists. Aborting.")
# exit()
# utils.mkdir(f"moments/{model_desc}")
# Setup visualization
# vis = Visualizer(port=opts.vis_port,
# env=opts.vis_env) if opts.enable_vis else None
# if vis is not None: # display options
# vis.vis_table("Options", vars(opts))
os.environ['CUDA_VISIBLE_DEVICES'] = opts.gpu_id
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Device: %s" % device)
# Setup random seed
torch.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# Setup dataloader
if opts.dataset=='voc' and not opts.crop_val:
opts.val_batch_size = 1
train_dst, val_dst = get_dataset(opts)
train_loader = data.DataLoader(
train_dst, batch_size=opts.batch_size, shuffle=False, num_workers=2)
val_loader = data.DataLoader(
val_dst, batch_size=opts.val_batch_size, shuffle=False, num_workers=2)
print("Dataset: %s, Train set: %d, Val set: %d" %
(opts.dataset, len(train_dst), len(val_dst)))
# for tempering
train_size = len(train_dst)
num_batches = train_size / opts.batch_size + 1
# Set up model
if opts.model == 'pspNet':
from network.network import PSPNet
#,FCN8,SegNet
model = PSPNet(num_classes=opts.num_classes, pretrained=True)
elif opts.model == 'FCN8':
from network.network import FCN8
model = FCN8(num_classes=opts.num_classes)
elif opts.model =='resnet-Unet':
from backboned_unet import Unet
# net = Unet(backbone_name='densenet121', classes=2)
# model = Unet(backbone_name=opts.backbone, pretrained=True, classes=opts.num_classes, decoder_filters=(512, 256, 128, 64, 32))
# for VGG
model = Unet(backbone_name=opts.backbone, pretrained=True, classes=opts.num_classes)
pytorch_total_params = sum(p.numel() for p in model.parameters())
print('number of trainable parameters:', pytorch_total_params)
elif opts.model =='axial':
from network.axialNet import axial50s
model = axial50s(pretrained=True)
pytorch_total_params = sum(p.numel() for p in model.parameters())
print('number of trainable parameters:', pytorch_total_params)
elif opts.model =='unet':
from network.unet import UNet
model = UNet(n_channels=3, n_classes=1, bilinear=True)
else:
model_map = {
'deeplabv3_resnet50': network.deeplabv3_resnet50,
'deeplabv3plus_resnet50': network.deeplabv3plus_resnet50,
'deeplabv3_resnet101': network.deeplabv3_resnet101,
'deeplabv3plus_resnet101': network.deeplabv3plus_resnet101,
'deeplabv3_mobilenet': network.deeplabv3_mobilenet,
'deeplabv3plus_mobilenet': network.deeplabv3plus_mobilenet
}
model = model_map[opts.model](num_classes=opts.num_classes, output_stride=opts.output_stride)
models = [model for m in range(opts.moment_count)]
print("Loaded models", len(models))
if opts.separable_conv and 'plus' in opts.model:
network.convert_to_separable_conv(model.classifier)
if (opts.model != 'pspNet') and (opts.model != 'segNet') and (opts.model != 'FCN8'):
utils.set_bn_momentum(model.backbone, momentum=0.01)
# Set up metrics
metrics = StreamSegMetrics(opts.num_classes)
def get_optimizer():
# Set up optimizer
if opts.model in ['pspNet', 'segNet', 'FCN8']:
optimizer = torch.optim.SGD(params=model.parameters(), lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
elif opts.model == 'resnet-Unet':
optimizer = torch.optim.Adam(params=model.parameters(), lr=opts.lr)
elif opts.model == 'unet':
optimizer = torch.optim.RMSprop(params=model.parameters(), lr=opts.lr, weight_decay=1e-8, momentum=0.9)
elif opts.model == 'axial':
optimizer = torch.optim.Adam(model.parameters(), lr=opts.lr)
else:
optimizer = torch.optim.SGD(params=[
{'params': model.backbone.parameters(), 'lr': 0.1*opts.lr},
{'params': model.classifier.parameters(), 'lr': opts.lr},
], lr=opts.lr, momentum=0.8, weight_decay=opts.weight_decay)
return optimizer
def weighting_function(epis):
return torch.pow((1.0 + epis), opts.kappa)
optims = [get_optimizer() for m in range(opts.moment_count)]
print("Loaded optims", len(optims))
if opts.loss_type == "pcgrad":
optims = [PCGrad(o) for o in optims]
#optimizer = torch.optim.SGD(params=model.parameters(), lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
#torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
# if opts.lr_policy=='poly':
# scheduler = utils.PolyLR(optimizer, opts.total_itrs, power=0.9)
# elif opts.lr_policy=='step':
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.step_size, gamma=0.1)
scheduler = None
# Set up criterion
#criterion = utils.get_loss(opts.loss_type)
# if opts.loss_type == 'focal_loss':
# criterion = utils.FocalLoss(ignore_index=255, size_average=True)
# elif opts.loss_type == 'cross_entropy':
criterion = nn.CrossEntropyLoss(ignore_index=255, reduction='mean')
if not opts.dev_run:
utils.mkdir('checkpoints')
def save_ckpt(path):
""" save current model
"""
if not opts.dev_run:
torch.save({
"cur_itrs": cur_itrs,
"model_state": model.state_dict(),
"optimizer_state": optimizer.state_dict(),
"best_score": best_score,
}, path)
print(f"[{not opts.dev_run}] Model saved as {path}")
def save_moment(model, moment_id, epoch=-1):
""" save moment checkpoint
"""
path = f"{opts.root}/moments/{model_desc}/{moment_id}"
if epoch > -1:
path += f"_{epoch}s"
path += ".pt"
if not opts.dev_run:
torch.save({
"model_state": model.state_dict(),
}, path)
print(f"[{not opts.dev_run}] Model MOMENT {moment_id} saved")
def standard_loss(outputs, labels, criterion, weights=[], device=None):
if len(weights):
loss = F.cross_entropy(outputs, labels, reduction="none")
adj_w = torch.tensor(weights).unsqueeze(dim=1).unsqueeze(dim=1).to(device)
loss *= adj_w
return loss.sum() / len(labels)
else:
return F.cross_entropy(outputs, labels)
def weighting_function(epistemics):
return torch.pow((1.0 + torch.tensor(epistemics)), opts.kappa)
def load_moment(moment_id, model, device):
checkpoint = torch.load(f"{opts.root}/moments/{opts.model_desc}/{moment_id}.pt", map_location=device)
state_dict = checkpoint['model_state']
try:
model.load_state_dict(state_dict)
except:
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'module' not in k:
k = 'module.'+k
else:
k = k.replace('features.module.', 'module.features.')
new_state_dict[k]=v
model.load_state_dict(new_state_dict)
model.eval()
return model
def predict_full_posterior(models, loader, size, compute_acc=False):
if opts.dev_run:
true_targets = np.zeros((opts.batch_size, 512, 512))
else:
true_targets = np.zeros((size, 512, 512))
for batch in enumerate(loader):
_, (_, targets, idxes) = batch
true_targets[idxes] = targets
if opts.dev_run:
break
print(true_targets.shape)
m_logits = []
for model_idx, m in enumerate(models):
m_preds = []
for batch in enumerate(loader):
batch_idx, (images, labels, idxes) = batch
outputs = model(images)
preds_batch = outputs.detach().max(dim=1)[1].cpu().numpy()*255
preds_batch = preds_batch.astype(np.uint8)
m_preds.append(preds_batch)
if opts.dev_run:
break
m_logits.append(np.concatenate(m_preds))
# [N_MOMENTS, N_SAMPLES, 512, 512]
m_logits = np.array(m_logits)
print("m_logits.shape", m_logits.shape)
# [N_SAMPLES, 512, 512]
m_preds = np.mean(m_logits, axis=0)
print("m_preds.shape", m_preds.shape)
temp = (m_logits - np.broadcast_to(m_preds, (opts.moment_count, *m_preds.shape)))**2
epis_ = np.sqrt(np.sum(temp, axis=0)) / opts.moment_count
epis_ = epis_.astype(np.double)
# [N_SAMPLES, 512, 512]
print("epis_.shape before collapse", epis_.shape)
# take max or mean?
epis = epis_.mean(axis=(1, 2))
print("epis.shape", epis.shape)
if compute_acc:
metrics.reset()
# compute useful metrics on validation set...
metrics.update(true_targets, m_preds)
score = metrics.get_results()
return score
else:
return m_preds, epis
# Restore
best_score = 0.0
cur_itrs = 0
cur_epochs = 0
# TODO rewrite for Bay version
# if opts.ckpt is not None and os.path.isfile(opts.ckpt):
# checkpoint = torch.load(opts.ckpt, map_location=torch.device('cpu'))
# model.load_state_dict(checkpoint["model_state"])
# model = nn.DataParallel(model)
# model.to(device)
# if opts.continue_training:
# optimizer.load_state_dict(checkpoint["optimizer_state"])
# scheduler.load_state_dict(checkpoint["scheduler_state"])
# cur_itrs = checkpoint["cur_itrs"]
# best_score = checkpoint['best_score']
# print("Training state restored from %s" % opts.ckpt)
# print("Model restored from %s" % opts.ckpt)
# del checkpoint # free memory
# else:
# print("[!] Retrain")
# model = nn.DataParallel(model)
# model.to(device)
#========== Train Loop ==========#
vis_sample_id = np.random.randint(0, len(val_loader), opts.vis_num_samples,
np.int32) if (opts.enable_vis or opts.log_masks_wandb) else None
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
interval_loss = 0
# assumes unshuffled set! only once on train
mean_preds, epis = predict_full_posterior(models, train_loader, len(train_dst))
weights = weighting_function(epis)
train_loader = data.DataLoader(
train_dst, batch_size=opts.batch_size, shuffle=True, num_workers=2)
for e in range(opts.max_epochs):
print("Epoch", e)
for moment_id, m in enumerate(models):
model = load_moment(moment_id, model.to(device), device)
model.train()
for batch in enumerate(train_loader):
batch_idx, (images, labels, idxes) = batch
mean_preds_batch = mean_preds[idxes]
weights_batch = weights[idxes]
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
optims[model_idx].zero_grad()
outputs = m(images)
# =============== LOSS ======================
std_loss = standard_loss(outputs, labels, criterion, weights, device)
sharpen_loss = standard_loss(outputs, mean_preds_batch, weights, device)
if opts.loss_type == "pcgrad":
optims[model_idex].pc_backward([sharpen_loss, std_loss])
elif opts.loss_type == "sharpen":
sharpen_loss.backward()
else:
std_loss.backward()
optims[model_idex].step()
# log batch loss...
if not opts.dev_run:
wandb.log({"std loss": std_loss, "sharpen loss": sharpen_loss})
else:
# single batch per moment per epoch on dev mode
break
# save sharpened moment without overwriting.
save_moment(model, model_idx, epoch=e)
score = predict_full_posterior(models, val_loader, len(val_dst), compute_acc=True)
if opts.dev_run:
print(score)
else:
wandb.log(score)
if __name__ == '__main__':
main()