-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA1-T1-mlp-multirun.py
201 lines (147 loc) · 5.68 KB
/
A1-T1-mlp-multirun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
#create the validation set
X_valid, X_train = X_train_full[:6000] / 255.0, X_train_full[6000:] / 255.0
y_valid, y_train = y_train_full[:6000], y_train_full[6000:]
#add label for class
class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
# In[2]:
print(tf.config.list_physical_devices())
# In[3]:
#variable
acts=["relu","linear"]
kinits=['he_normal','he_uniform','glorot_normal','glorot_uniform']
lrs=[0.5,0.1,1.0]
# In[4]:
#A multi-layer perceptron described in detail in Ch. 10, pp. 299-307
d1=300
d2=100
for act in acts:
for kinit in kinits:
for lr in lrs:
print(act,kinit,lr)
model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))# convert each input image into a 1D array
model.add(keras.layers.Dense(d1, activation=act,kernel_initializer=kinit))# a Dense hidden layer with 300 neurons.
#model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(d2, activation=act,kernel_initializer=kinit))# a Dense hidden layer with 100 neurons.
#model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(10, activation="softmax"))#a Dense output layer with 10 neurons (one per class)
opt=keras.optimizers.Adam(learning_rate=lr)
model.compile(loss="sparse_categorical_crossentropy",
optimizer=opt,
metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))
df=pd.DataFrame(history.history)
df.to_csv(f'mlp/{d1}_{d2}_{kinit}_{act}_Adam_{lr}.csv')
df.plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)
# In[8]:
import os
files=os.listdir('mlp/')
saving=[]
for filename in files:
if '.csv' in filename:
data=pd.read_csv(f'mlp/{filename}')[-1:]
d1=float(filename.split('_')[0])
d2=float(filename.split('_')[1])
kinit=filename.split('_')[2]+'_'+filename.split('_')[3]
act=filename.split('_')[4]
opt=filename.split('_')[5]
if 'd0.5' in opt:
opt=opt[:-4]
reg='d0.5'
elif 'l10.01' in opt:
opt=opt[:-6]
reg='l10.01'
elif 'l20.01' in opt:
opt=opt[:-6]
reg='l20.01'
else:
reg='None'
lr=float(filename.split('_')[6][:-4])
acc=np.array(data['accuracy'])[0]
loss=np.array(data['loss'])[0]
val_acc=np.array(data['val_accuracy'])[0]
val_loss=np.array(data['val_loss'])[0]
read_out=[d1,d2,kinit,act,opt,reg,lr,acc,loss,val_acc,val_loss]
saving.append(read_out)
# In[9]:
df=pd.DataFrame(saving,
columns=['d1','d2','kernal_init','activation','optimizer','regularization','learning_rate',
'accuracy','loss','val_accuracy','val_loss'])
# In[11]:
df.nlargest(10, 'accuracy')
# In[12]:
df.nlargest(10, 'val_accuracy')
# In[89]:
#learning_rate
subset0=df[(df['kernal_init']=='glorot_uniform')
*(df['regularization']=='None')
*(df['activation']=='relu')
*(df['optimizer']=='SGD')]
plt.scatter(subset0['learning_rate'],subset0['accuracy'],label='accuracy')
plt.scatter(subset0['learning_rate'],subset0['val_accuracy'],label='val_accuracy')
plt.scatter(subset0['learning_rate'],subset0['loss'],label='accuracy')
plt.scatter(subset0['learning_rate'],subset0['val_loss'],label='val_accuracy')
plt.grid()
plt.legend()
plt.ylim(0,1)
plt.xscale('log')
plt.xlabel('learning rate')
# In[13]:
#optimizer influence
subset1=df[(df['kernal_init']=='glorot_uniform')
*(df['regularization']=='None')
*(df['activation']=='relu')
*(df['optimizer']=='Adam')]
plt.scatter(subset1['learning_rate'],subset1['accuracy'],label='accuracy')
plt.scatter(subset1['learning_rate'],subset1['val_accuracy'],label='val_accuracy')
plt.scatter(subset1['learning_rate'],subset1['loss'],label='accuracy')
plt.scatter(subset1['learning_rate'],subset1['val_loss'],label='val_accuracy')
plt.grid()
plt.legend()
plt.ylim(0,1)
plt.xscale('log')
plt.xlabel('learning rate')
# In[16]:
#learning_rate
subset0=df[(df['kernal_init']=='glorot_uniform')
*(df['regularization']=='None')
*(df['activation']=='relu')
*(df['optimizer']=='SGD')]
subset2=df[(df['kernal_init']=='glorot_normal')
*(df['regularization']=='None')
*(df['activation']=='relu')
*(df['optimizer']=='SGD')]
subset3=df[(df['kernal_init']=='he_normal')
*(df['regularization']=='None')
*(df['activation']=='relu')
*(df['optimizer']=='SGD')]
subset4=df[(df['kernal_init']=='he_uniform')
*(df['regularization']=='None')
*(df['activation']=='relu')
*(df['optimizer']=='SGD')]
plt.scatter(subset2['learning_rate'],subset2['accuracy'],label='glorot_normal')
plt.scatter(subset0['learning_rate'],subset0['accuracy'],label='glorot_uniform')
plt.scatter(subset3['learning_rate'],subset2['accuracy'],label='he_normal')
plt.scatter(subset4['learning_rate'],subset2['accuracy'],label='he_uniform')
plt.grid()
plt.legend()
plt.ylim(0,1)
plt.xscale('log')
plt.xlabel('Learning rate')
plt.ylabel('Accuracy')
# In[ ]:
cifar10=keras.datasets.cifar10.load_data()