-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA1-T1-cnn-muliti_run.py
123 lines (85 loc) · 3.68 KB
/
A1-T1-cnn-muliti_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
fashion_mnist = keras.datasets.fashion_mnist
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
#create the validation set
X_valid, X_train = X_train_full[:6000] / 255.0, X_train_full[6000:] / 255.0
y_valid, y_train = y_train_full[:6000], y_train_full[6000:]
#add label for class
class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
# In[4]:
kinits=['he_normal','he_uniform','glorot_normal','glorot_uniform']
#lrs=[0.05,0.01,0.005,0.001,0.0005,0.0001]
drs=[0.1,0.2,0.3,0.4,0.5]
# In[5]:
for kinit in kinits:
#for kinit in ['glorot_normal']:
#for lr in lrs:
for lr in [0.001]:
#for dr in drs:
for dr in [0.1]:
#
#a convolutional neural network described in Ch. 14, p. 447.
model = keras.models.Sequential([
keras.layers.Conv2D(64, 7, activation="relu",kernel_initializer=kinit, padding="same",
input_shape=[28, 28, 1]),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(128, 3, activation="relu",kernel_initializer=kinit, padding="same"),
keras.layers.Conv2D(128, 3, activation="relu",kernel_initializer=kinit, padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(256, 3, activation="relu",kernel_initializer=kinit, padding="same"),
keras.layers.Conv2D(256, 3, activation="relu",kernel_initializer=kinit, padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation="relu",kernel_initializer=kinit),
keras.layers.Dropout(dr),
keras.layers.Dense(64, activation="relu",kernel_initializer=kinit),
keras.layers.Dropout(dr),
keras.layers.Dense(10, activation="softmax")
])
opt=keras.optimizers.Adam(learning_rate=lr)
model.compile(loss="sparse_categorical_crossentropy",
optimizer=opt,
metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=30,
validation_data=(X_valid, y_valid))
df=pd.DataFrame(history.history)
df.to_csv(f'cnn/{kinit}_relu_Adam_{lr}_{dr}.csv')
df.plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)
# In[6]:
import os
files=os.listdir('cnn/')
saving=[]
for filename in files:
if '.csv' in filename:
data=pd.read_csv(f'cnn/{filename}')[-1:]
kinit=filename.split('_')[0]+'_'+filename.split('_')[1]
act=filename.split('_')[2]
opt=filename.split('_')[3]
reg='drop'
drop=float(filename.split('_')[5][:-4])
lr=float(filename.split('_')[4])
acc=np.array(data['accuracy'])[0]
loss=np.array(data['loss'])[0]
val_acc=np.array(data['val_accuracy'])[0]
val_loss=np.array(data['val_loss'])[0]
read_out=[kinit,act,opt,reg,drop,lr,acc,loss,val_acc,val_loss]
saving.append(read_out)
# In[7]:
df=pd.DataFrame(saving,
columns=['kernal_init','activation','optimizer','regularization','regularization_value','learning_rate',
'accuracy','loss','val_accuracy','val_loss'])
# In[8]:
df.nlargest(10, 'accuracy')
# In[9]:
df.nlargest(10, 'val_accuracy')
# In[ ]: