You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -797,7 +797,7 @@ In this section, we will summarize Federated Learning papers accepted by top Dat
797
797
| Efficient Participant Contribution Evaluation for Horizontal and Vertical Federated Learning | USTC | ICDE | 2022 | DIG-FL[^DIG-FL]|[[PUB](https://ieeexplore.ieee.org/document/9835159)]|
798
798
| An Introduction to Federated Computation | University of Warwick; Facebook | SIGMOD Tutorial | 2022 | FCT[^FCT]|[[PUB](https://dl.acm.org/doi/10.1145/3514221.3522561)]|
799
799
| BlindFL: Vertical Federated Machine Learning without Peeking into Your Data | PKU; Tencent | SIGMOD | 2022 | BlindFL[^BlindFL]|[[PUB](https://dl.acm.org/doi/10.1145/3514221.3526127)][[PDF](https://arxiv.org/abs/2206.07975)]|
800
-
| An Efficient Approach for Cross-Silo Federated Learning to Rank | BUAA | ICDE | 2021 | CS-F-LTR[^CS-F-LTR]|[[PUB](https://ieeexplore.ieee.org/document/9458704)][[RELATED PAPER(ZH)](ZH)]|
800
+
| An Efficient Approach for Cross-Silo Federated Learning to Rank | BUAA | ICDE | 2021 | CS-F-LTR[^CS-F-LTR]|[[PUB](https://ieeexplore.ieee.org/document/9458704)][[RELATED PAPER(ZH)](https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13328/j.cnki.jos.006174)]|
801
801
| Feature Inference Attack on Model Predictions in Vertical Federated Learning | NUS | ICDE | 2021 | FIA[^FIA]|[[PUB](https://ieeexplore.ieee.org/document/9458672/)][[PDF](https://arxiv.org/abs/2010.10152)][[CODE](https://github.com/xj231/featureinference-vfl)]|
|[PySyft](https://github.com/OpenMined/PySyft)<br />[](https://github.com/OpenMined/PySyft/stargazers)<br />|[A generic framework for privacy preserving deep learning](https://arxiv.org/abs/1811.04017)|[OpenMined](https://www.openmined.org/)|||[[DOC](https://pysyft.readthedocs.io/en/latest/installing.html)]|
946
-
|[FATE](https://github.com/FederatedAI/FATE)<br />[](https://github.com/FederatedAI/FATE/stargazers)<br />|[FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection](https://www.jmlr.org/papers/volume22/20-815/20-815.pdf)|[WeBank](https://fedai.org/)||:white_check_mark::white_check_mark:|[[DOC](https://fate.readthedocs.io/en/latest/)][[DOC(ZH)](ZH)]|
946
+
|[FATE](https://github.com/FederatedAI/FATE)<br />[](https://github.com/FederatedAI/FATE/stargazers)<br />|[FATE: An Industrial Grade Platform for Collaborative Learning With Data Protection](https://www.jmlr.org/papers/volume22/20-815/20-815.pdf)|[WeBank](https://fedai.org/)||:white_check_mark::white_check_mark:|[[DOC](https://fate.readthedocs.io/en/latest/)][[DOC(ZH)](https://fate.readthedocs.io/en/latest/zh/)]|
|[TFF(Tensorflow-Federated)](https://github.com/tensorflow/federated) <br />[](https://github.com/tensorflow/federated/stargazers)<br />|[Towards Federated Learning at Scale: System Design](https://arxiv.org/abs/1902.01046)| Google |||[[DOC](https://www.tensorflow.org/federated)][[PAGE](https://www.tensorflow.org/federated)]|
949
949
|[FedML](https://github.com/FedML-AI/FedML)<br />[](https://github.com/FedML-AI/FedML/stargazers)<br />|[FedML: A Research Library and Benchmark for Federated Machine Learning](https://arxiv.org/abs/2007.13518)|[FedML](https://fedml.ai/)|:white_check_mark::white_check_mark:|:white_check_mark:|[[DOC](https://doc.fedml.ai/)]|
@@ -958,7 +958,7 @@ In this section, we will summarize Federated Learning papers accepted by top Dat
958
958
|[IBM Federated Learning](https://github.com/IBM/federated-learning-lib)<br />[](https://github.com/IBM/federated-learning-lib/stargazers)<br />|[IBM Federated Learning: an Enterprise Framework White Paper](https://arxiv.org/abs/2007.10987.pdf)|[IBM](https://github.com/IBM)||:white_check_mark:|[[PAPERS](https://github.com/IBM/federated-learning-lib/blob/main/docs/papers.md)]|
|[Privacy Meter](https://github.com/privacytrustlab/ml_privacy_meter)<br />[](https://github.com/PaddlePaddle/privacytrustlab/ml_privacy_meter)<br />|[Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning](https://ieeexplore.ieee.org/document/8835245)| University of Massachusetts Amherst ||||
961
-
|[Fedlab](https://github.com/SMILELab-FL/FedLab)<br />[](https://github.com/SMILELab-FL/FedLab/stargazers)<br />|[FedLab: A Flexible Federated Learning Framework](https://arxiv.org/abs/2107.11621)|[SMILELab](https://github.com/SMILELab-FL/)|||[[DOC](https://fedlab.readthedocs.io/en/master/)][[DOC(ZH)](ZH)][[PAGE](https://github.com/SMILELab-FL/FedLab-benchmarks)]|
961
+
|[Fedlab](https://github.com/SMILELab-FL/FedLab)<br />[](https://github.com/SMILELab-FL/FedLab/stargazers)<br />|[FedLab: A Flexible Federated Learning Framework](https://arxiv.org/abs/2107.11621)|[SMILELab](https://github.com/SMILELab-FL/)|||[[DOC](https://fedlab.readthedocs.io/en/master/)][[DOC(ZH)](https://fedlab.readthedocs.io/zh_CN/latest/)][[PAGE](https://github.com/SMILELab-FL/FedLab-benchmarks)]|
962
962
|[Differentially Private Federated Learning: A Client-level Perspective](https://github.com/SAP-samples/machine-learning-diff-private-federated-learning) <br />[](https://github.comSAP-samples/machine-learning-diff-private-federated-learning/stargazers)<br />|[Differentially Private Federated Learning: A Client Level Perspective](https://arxiv.org/abs/1712.07557)|[SAP-samples](https://github.com/SAP-samples)||||
0 commit comments