-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathdemo.py
78 lines (58 loc) · 2.94 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
from models.hrn import Reconstructor
import cv2
from tqdm import tqdm
import argparse
def run_hrn(args):
params = [
'--checkpoints_dir', args.checkpoints_dir,
'--name', args.name,
'--epoch', args.epoch,
]
reconstructor = Reconstructor(params)
names = sorted([name for name in os.listdir(args.input_root) if '.jpg' in name or '.png' in name or '.jpeg' in name or '.PNG' in name or '.JPG' in name or '.JPEG' in name])
print('predict', args.input_root)
for ind, name in enumerate(tqdm(names)):
save_name = os.path.splitext(name)[0]
out_dir = os.path.join(args.output_root, save_name)
os.makedirs(out_dir, exist_ok=True)
img = cv2.imread(os.path.join(args.input_root, name))
output = reconstructor.predict(img, visualize=True, save_name=save_name, out_dir=out_dir)
print('results are saved to:', args.output_root)
def run_mvhrn(args):
params = [
'--checkpoints_dir', args.checkpoints_dir,
'--name', args.name,
'--epoch', args.epoch,
]
reconstructor = Reconstructor(params)
names = sorted([name for name in os.listdir(args.input_root) if
'.jpg' in name or '.png' in name or '.jpeg' in name or '.PNG' in name or '.JPG' in name or '.JPEG' in name])
os.makedirs(args.output_root, exist_ok=True)
print('predict', args.input_root)
out_dir = args.output_root
os.makedirs(out_dir, exist_ok=True)
img_list = []
for ind, name in enumerate(names):
img = cv2.imread(os.path.join(args.input_root, name))
img_list.append(img)
# output = reconstructor.predict_base(img, save_name=save_name, out_dir=out_dir)
output = reconstructor.predict_multi_view(img_list, visualize=True, out_dir=out_dir)
print('results are saved to:', args.output_root)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--checkpoints_dir', type=str, default='assets/pretrained_models', help='models are saved here')
parser.add_argument('--name', type=str, default='hrn_v1.1',
help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--epoch', type=str, default='10', help='which epoch to load? set to latest to use latest cached model')
parser.add_argument('--input_type', type=str, default='single_view', # or 'multi_view'
help='reconstruct from single-view or multi-view')
parser.add_argument('--input_root', type=str, default='./assets/examples/single_view_image',
help='directory of input images')
parser.add_argument('--output_root', type=str, default='./assets/examples/single_view_image_results',
help='directory for saving results')
args = parser.parse_args()
if args.input_type == 'multi_view':
run_mvhrn(args)
else:
run_hrn(args)