-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_zero_dp_tutorial.py
57 lines (45 loc) · 1.49 KB
/
5_zero_dp_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from argparse import ArgumentParser
from datasets import load_dataset
from torch.optim import Adam
from torch.utils.data import DataLoader
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import deepspeed
import torch.distributed as dist
model = GPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
parser = ArgumentParser()
parser.add_argument(
"--deepspeed_config", default="/mnt/raid6/yjoonjang/projects/distributed-train/src/zero_dp_config.json", type=str
)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
optimizer = Adam(model.parameters(), lr=3e-5, weight_decay=3e-7)
engine, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=optimizer,
)
datasets = load_dataset("squad").data["train"]["context"]
datasets = [str(sample) for sample in datasets]
data_loader = DataLoader(datasets, batch_size=8, num_workers=8)
engine.train()
for i, data in enumerate(data_loader):
tokens = tokenizer(
data,
return_tensors="pt",
truncation=True,
padding=True,
max_length=1024,
)
loss = engine(
input_ids=tokens.input_ids.cuda(),
attention_mask=tokens.attention_mask.cuda(),
labels=tokens.input_ids.cuda(),
).loss
engine.backward(loss)
engine.step()
if i % 10 == 0 and dist.get_rank() == 0:
print(f"step:{i}, loss:{loss}")
if i >= 300:
break