-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_lora.py
66 lines (47 loc) · 2.1 KB
/
infer_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from transformers import LlavaForConditionalGeneration, AutoProcessor
import torch
from peft import peft_model, PeftModel
from utils.data import LlavaDataset
from PIL import Image
raw_model_name_or_path = "/blue/amolstad/y.jin/train-llava/my-model/model-01"
peft_model_name_or_path = "/blue/amolstad/y.jin/train-llava/Results"
model = LlavaForConditionalGeneration.from_pretrained(raw_model_name_or_path,
device_map="cuda:0",
torch_dtype=torch.float16)
model = PeftModel.from_pretrained(model, peft_model_name_or_path, adapter_name="peft_v1")
processor = AutoProcessor.from_pretrained(raw_model_name_or_path)
model.eval()
print('ok')
llavadataset = LlavaDataset("/blue/amolstad/y.jin/train-llava/data")
len(llavadataset), llavadataset[10]
testdata = llavadataset[102]
print(len(testdata))
print(testdata[0])
print(testdata[1])
print(testdata[2])
Image.open(testdata[2])
def build_model_input(model, processor, testdata):
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": testdata[0]},
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# print(prompt)
# print("*" * 20)
image = Image.open(testdata[2])
inputs = processor(text=prompt, images=image, return_tensors="pt")
for tk in inputs.keys():
inputs[tk] = inputs[tk].to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=20)
generated_ids = [
oid[len(iids):] for oid, iids in zip(generated_ids, inputs.input_ids)
]
# gen_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
gen_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
return gen_text
build_model_input(model, processor, testdata)
model = model.merge_and_unload()
model.save_pretrained("output_model_lora_merge_001")
processor.save_pretrained("output_model_lora_merge_001")