-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
216 lines (180 loc) · 6.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch.nn as nn
import numpy as np
import torchaudio
char_map_str = """
' 0
<SPACE> 1
a 2
b 3
c 4
d 5
e 6
f 7
g 8
h 9
i 10
j 11
k 12
l 13
m 14
n 15
o 16
p 17
q 18
r 19
s 20
t 21
u 22
v 23
w 24
x 25
y 26
z 27
"""
class TextTransform:
"""Maps characters to integers and vice versa"""
def __init__(self):
# char_map_str = char_map_str1
self.char_map = {}
self.index_map = {}
for line in char_map_str.strip().split('\n'):
ch, index = line.split()
self.char_map[ch] = int(index)
self.index_map[int(index)] = ch
self.index_map[1] = ' '
def text_to_int(self, text):
""" Use a character map and convert text to an integer sequence """
int_sequence = []
for c in text:
if c == ' ':
ch = self.char_map['<SPACE>']
else:
ch = self.char_map[c]
int_sequence.append(ch)
return int_sequence
def int_to_text(self, labels):
""" Use a character map and convert integer labels to an text sequence """
string = []
for i in labels:
string.append(self.index_map[i])
return ''.join(string).replace('<SPACE>', ' ')
train_audio_transforms = nn.Sequential(
torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_mels=128),
torchaudio.transforms.FrequencyMasking(freq_mask_param=15),
torchaudio.transforms.TimeMasking(time_mask_param=35)
)
valid_audio_transforms = torchaudio.transforms.MelSpectrogram()
text_transform = TextTransform()
def data_processing(data, data_type="train"):
spectrograms = []
labels = []
input_lengths = []
label_lengths = []
for (waveform, _, utterance, _, _, _) in data:
if data_type == 'train':
spec = train_audio_transforms(waveform).squeeze(0).transpose(0, 1)
else:
spec = valid_audio_transforms(waveform).squeeze(0).transpose(0, 1)
spectrograms.append(spec)
label = torch.Tensor(text_transform.text_to_int(utterance.lower()))
labels.append(label)
input_lengths.append(spec.shape[0]//2)
label_lengths.append(len(label))
spectrograms = nn.utils.rnn.pad_sequence(spectrograms, batch_first=True).unsqueeze(1).transpose(2, 3)
labels = nn.utils.rnn.pad_sequence(labels, batch_first=True)
return spectrograms, labels, input_lengths, label_lengths
def avg_wer(wer_scores, combined_ref_len):
return float(sum(wer_scores)) / float(combined_ref_len)
def _levenshtein_distance(ref, hyp):
m = len(ref)
n = len(hyp)
# special case
if ref == hyp:
return 0
if m == 0:
return n
if n == 0:
return m
if m < n:
ref, hyp = hyp, ref
m, n = n, m
# use O(min(m, n)) space
distance = np.zeros((2, n + 1), dtype=np.int32)
# initialize distance matrix
for j in range(0,n + 1):
distance[0][j] = j
# calculate levenshtein distance
for i in range(1, m + 1):
prev_row_idx = (i - 1) % 2
cur_row_idx = i % 2
distance[cur_row_idx][0] = i
for j in range(1, n + 1):
if ref[i - 1] == hyp[j - 1]:
distance[cur_row_idx][j] = distance[prev_row_idx][j - 1]
else:
s_num = distance[prev_row_idx][j - 1] + 1
i_num = distance[cur_row_idx][j - 1] + 1
d_num = distance[prev_row_idx][j] + 1
distance[cur_row_idx][j] = min(s_num, i_num, d_num)
return distance[m % 2][n]
def word_errors(reference, hypothesis, ignore_case=False, delimiter=' '):
if ignore_case == True:
reference = reference.lower()
hypothesis = hypothesis.lower()
ref_words = reference.split(delimiter)
hyp_words = hypothesis.split(delimiter)
edit_distance = _levenshtein_distance(ref_words, hyp_words)
return float(edit_distance), len(ref_words)
def char_errors(reference, hypothesis, ignore_case=False, remove_space=False):
if ignore_case == True:
reference = reference.lower()
hypothesis = hypothesis.lower()
join_char = ' '
if remove_space == True:
join_char = ''
reference = join_char.join(filter(None, reference.split(' ')))
hypothesis = join_char.join(filter(None, hypothesis.split(' ')))
edit_distance = _levenshtein_distance(reference, hypothesis)
return float(edit_distance), len(reference)
def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Calculate word error rate (WER). WER compares reference text and
hypothesis text in word-level. WER is defined as:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Please draw an attention
that empty items will be removed when splitting sentences by delimiter.
"""
edit_distance, ref_len = word_errors(reference, hypothesis, ignore_case,
delimiter)
if ref_len == 0:
raise ValueError("Reference's word number should be greater than 0.")
wer = float(edit_distance) / ref_len
return wer
def cer(reference, hypothesis, ignore_case=False, remove_space=False):
"""Calculate charactor error rate (CER). CER compares reference text and
hypothesis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of characters substituted,
Dc is the number of characters deleted,
Ic is the number of characters inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode. Please draw an attention that the leading and tailing
space characters will be truncated and multiple consecutive space
characters in a sentence will be replaced by one space character.
"""
edit_distance, ref_len = char_errors(reference, hypothesis, ignore_case,
remove_space)
if ref_len == 0:
raise ValueError("Length of reference should be greater than 0.")
cer = float(edit_distance) / ref_len
return cer