-
Notifications
You must be signed in to change notification settings - Fork 0
/
denominator-series-3.mag
501 lines (454 loc) · 15.9 KB
/
denominator-series-3.mag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// This program computes a series expansion for the affine Macdonald denominator
// for U_q(sl_3 hat) as defined in the paper:
//
// P. Etingof and A. Kirillov Jr. On the affine analogue of Jack and Macdonald
// polynomials. Duke Math. J., 78(2):229-256, 1995.
//
// It provides computational evidence for the affine Macdonald denominator
// conjecture given in the paper:
//
// E. M. Rains, Y. Sun, and A. Varchenko. Affine Macdonald conjectures and
// special values of Felder-Varchenko functions. Preprint, 2016.
//
// The expansion is done to first order in q^{-2\omega}. The computation is
// done by computing the first order expansion of a singular vector in
//
// L_{k - 1, 0, -(k - 1), 3(k - 1)} \otimes L_{3(k - 1), 0, 0}(z),
//
// where L_{k - 1, 0, -(k - 1), 3(k - 1)} is an integrable irreducible module for
// U_q(sl_3 hat) and L_{3(k - 1), 0, 0}(z) is an evaluation module for
// U_q(sl_3 hat).
SetEchoInput(true);
ZZ := Integers();
F0 := Rationals();
R := RootDatum("A2");
U := QuantizedUEA(R);
Qq<q> := CoefficientRing(U);
M<f0, f1, f2, p> := FreeAlgebra(Qq, 4);
A<qlam1, qlam2, qomg> := FunctionField(Qq, 3);
qbinom := function(n)
nn := ZZ!n;
return (q^nn - 1/q^nn)/(q - 1/q);
end function;
dot := function(tup1, tup2)
if #tup1 eq 4 then
return tup1[1] * tup2[1] + tup1[2] * tup2[2] + tup1[3] * tup2[3] + tup1[4] * tup2[4];
elif #tup1 eq 3 then
return tup1[1] * tup2[1] + tup1[2] * tup2[2] + tup1[3] * tup2[3];
end if;
end function;
sub := function(tup1, tup2)
if #tup1 eq 4 then
return <tup1[1] - tup2[1], tup1[2] - tup2[2], tup1[3] - tup2[3], tup1[4] - tup2[4]>;
elif #tup1 eq 3 then
return <tup1[1] - tup2[1], tup1[2] - tup2[2], tup1[3] - tup2[3]>;
end if;
end function;
get_e_weight_gen := function(idx)
if idx eq 0 then
return <1, -1, 0, 1>;
elif idx eq 1 then
return <0, 1, -1, 0>;
elif idx eq 2 then
return <0, 0, 1, -1>;
end if;
end function;
get_weight_vect := function(mono, pweight, plevel)
ans := <0, 0, 0, 0>;
for let_idx in [1..Length(mono)] do
if mono[let_idx] eq f0 then
ans := ans + <-1, 1, 0, -1>;
elif mono[let_idx] eq f1 then
ans := ans + <0, -1, 1, 0>;
elif mono[let_idx] eq f2 then
ans := ans + <0, 0, -1, 1>;
else
end if;
end for;
return ans + <plevel, pweight[1], pweight[2], pweight[3]>;
end function;
get_root_weight := function(idx)
if idx eq 0 then
return <1, -1, 0, 1>;
elif idx eq 1 then
return <0, 1, -1, 0>;
elif idx eq 2 then
return <0, 0, 1, -1>;
else
end if;
end function;
get_fund_gen_weight := function(idx)
if idx eq 0 then
return <1, 0, 0, 0>;
elif idx eq 1 then
return <0, 1, 0, 0>;
elif idx eq 2 then
return <0, 1, 1, 0>;
else
end if;
end function;
get_weight := function(mono, idx, pweight, plevel)
return dot(get_root_weight(idx), get_weight_vect(mono, pweight, plevel));
end function;
get_fund_weight := function(mono, idx, pweight, plevel)
return dot(get_fund_gen_weight(idx), get_weight_vect(mono, pweight, plevel));
end function;
get_loop_weight := function(mono)
ans := 0;
for let_idx in [1..Length(mono)] do
if mono[let_idx] eq f0 then
ans := ans - 1;
end if;
end for;
return ans;
end function;
deloop_weight := function(wt)
return <wt[2], wt[3], wt[4]>;
end function;
get_ecomm := function(let, idx, weight)
if (idx eq 0 and not(let eq f0)) or (idx eq 1 and not(let eq f1)) or (idx eq 2 and not(let eq f2)) then
return 0;
else
return (q^weight - 1/q^weight) / (q - 1/q);
end if;
end function;
get_emult_mono := function(mono, idx, pweight, plevel)
ans := 0;
for let_idx in [1..Length(mono) - 1] do
prev := 1;
for idx2 in [1..let_idx - 1] do
prev := prev * mono[idx2];
end for;
after := 1;
for idx3 in [let_idx + 1..Length(mono)] do
after := after * mono[idx3];
end for;
weight := get_weight(after, idx, pweight, plevel);
comm := get_ecomm(mono[let_idx], idx, weight);
ans := ans + prev * comm * after;
end for;
return ans;
end function;
get_emult := function(term, idx, pweight, plevel)
ans := 0;
for mono in Monomials(term) do
ans := ans + MonomialCoefficient(term, mono) * get_emult_mono(mono, idx, pweight, plevel);
end for;
return ans;
end function;
term_to_vector := function(term, monos)
ans := [ MonomialCoefficient(term, mono) : mono in monos ];
return ans;
end function;
// return true if weight could appear in the second tensor factor
is_valid_sym_weight := function(wt, kk)
for i in [1..3] do
if wt[i] lt - (kk - 1) then
return false;
end if;
end for;
return true;
end function;
// returns true if mono could appear as the first tensor factor in a term of the singular vector
is_valid_sing_weight := function(mono, pweight, plevel, kk)
needed_wt := sub(pweight, deloop_weight(get_weight_vect(mono, pweight, plevel)));
return is_valid_sym_weight(needed_wt, kk);
end function;
// convert weights from basis of fundamental weights to lying in C^3
convert_wt := function(magma_wt)
return <magma_wt[1] * 2/3 + magma_wt[2] * 1/3, - magma_wt[1] * 1/3 + magma_wt[2] * 1/3, - magma_wt[1] * 1/3 - magma_wt[2] * 2/3>;
end function;
// convert weights from basis of simple roots to lying in C^3
convert_rt := function(magma_wt)
return <magma_wt[1], - magma_wt[1] + magma_wt[2], - magma_wt[2]>;
end function;
// returns the index of the generator of U corresponding to e_idx if idx > 0 or e_theta if idx = 0
get_mag_e_idx := function(idx, U, R)
if idx eq 1 then
wt := <1, -1, 0>;
elif idx eq 2 then
wt := <0, 1, -1>;
else
wt := <1, 0, -1>;
end if;
prp := PositiveRootsPerm(U);
for idx in [1..#(prp)] do
if convert_rt(PositiveRoots(R)[prp[idx]]) eq wt then
e_idx := idx;
end if;
end for;
if not(idx eq 0) then
return 5 + e_idx;
else
return e_idx;
end if;
end function;
// returns the index of the generator of U corresponding to f_idx if idx > 0 or f_theta if idx = 0
get_mag_f_idx := function(idx, U, R)
if idx eq 1 then
wt := <1, -1, 0>;
elif idx eq 2 then
wt := <0, 1, -1>;
else
wt := <1, 0, -1>;
end if;
prp := PositiveRootsPerm(U);
for idx in [1..#(prp)] do
if convert_rt(PositiveRoots(R)[prp[idx]]) eq wt then
f_idx := idx;
end if;
end for;
if not(idx eq 0) then
return f_idx;
else
return 5 + f_idx;
end if;
end function;
// rep: U-module
// curr_weight: tuple for current weight vector (all weight spaces are dimension 1)
// e_idx: index of e_i
get_e_trans_coeff := function(rep, curr_weight, e_idx)
weights, vects := WeightsAndVectors(rep);
wt_idx := -1;
for idx in [1..#(weights)] do
if convert_wt(weights[idx]) eq curr_weight then
wt_idx := idx;
end if;
end for;
if wt_idx eq -1 then
return 0;
end if;
if not(e_idx eq 0) then
mag_e_idx := get_mag_e_idx(e_idx, U, R);
u_elt := U.mag_e_idx;
else
u_elt := (U.3 * U.1 - U.1 * U.3 * q) * q^(-dot(<1, 0, 1>, curr_weight));
end if;
res := ElementToSequence(u_elt^rep.wt_idx);
for idx in [1..#(res)] do
if not(res[idx] eq 0) then
return res[idx];
end if;
end for;
return 0;
end function;
// rep: U-module
// curr_weight: tuple for current weight vector (all weight spaces are dimension 1)
// f_idx: index of f_i
get_f_trans_coeff := function(rep, curr_weight, f_idx)
weights, vects := WeightsAndVectors(rep);
wt_idx := -1;
for idx in [1..#(weights)] do
if convert_wt(weights[idx]) eq curr_weight then
wt_idx := idx;
end if;
end for;
if wt_idx eq -1 then
return 0;
end if;
if not(f_idx eq 0) then
mag_f_idx := get_mag_f_idx(f_idx, U, R);
u_elt := U.mag_f_idx;
else
u_elt := (U.6 * U.8 - U.8 * U.6 / q) * q^(dot(<1, 0, 1>, curr_weight));
end if;
res := ElementToSequence(u_elt^rep.wt_idx);
for idx in [1..#(res)] do
if not(res[idx] eq 0) then
return res[idx];
end if;
end for;
return 0;
end function;
// Apply gen to vect, where vect is interpreted as an element of the tensor product by tensoring each monomial by the appropriate basis vector to make the total weight curr_weight
get_tens_mult := function(vect, gen, rep, pweight, plevel, curr_weight, gb)
ans := M!0;
if gen eq f0 then
gen_idx := 0;
elif gen eq f1 then
gen_idx := 1;
else
gen_idx := 2;
end if;
for mono in Monomials(vect) do
ans := ans + MonomialCoefficient(vect, mono) * get_f_trans_coeff(rep, deloop_weight(sub(curr_weight, get_weight_vect(mono, pweight, plevel))), gen_idx) * mono;
weight_exp := dot(get_root_weight(gen_idx),
sub(curr_weight, get_weight_vect(mono, pweight, plevel)));
ans := ans + MonomialCoefficient(vect, mono) * q^(- weight_exp) * NormalForm(gen * mono, gb);
end for;
return ans;
end function;
// sing_vect: the singular vector, as an algebra element
// mono: the monomial to get the value of the intertwiner on
// rep: module object
// pweight: finite-type h.w.
// plevel: level
// gb: Groebner basis
get_inter_val := function(sing_vect, mono, rep, pweight, plevel, gb)
curr_weight := <plevel, pweight[1], pweight[2], pweight[3]>;
ans := sing_vect;
for idx in [1..Length(mono)] do
idx_mod := Length(mono) - idx + 1;
if not(mono[idx_mod] eq p) then
ans := get_tens_mult(ans, mono[idx_mod], rep, pweight, plevel, curr_weight, gb);
if mono[idx_mod] eq f0 then
curr_weight := curr_weight + <-1, 1, 0, -1>;
elif mono[idx_mod] eq f1 then
curr_weight := curr_weight + <0, -1, 1, 0>;
elif mono[idx_mod] eq f2 then
curr_weight := curr_weight + <0, 0, -1, 1>;
end if;
end if;
end for;
return ans;
end function;
get_tnorm := function(kk)
ans := qlam1^(kk - 1) * qlam2^(kk - 1);
for i in [1..kk - 1] do
ans := ans * (1 - q^(2 * i) / qlam1) * (1 - q^(2 * i) / qlam2) * (1 - q^(2 * i) / qlam1 / qlam2);
end for;
return ans;
end function;
// Return the trace associated to some kk.
get_trace := function(kk)
pweight := <(kk - 1), 0, - (kk - 1)>;
plevel := 3 * (kk - 1);
SV := HighestWeightRepresentation(U, [3 * (kk - 1), 0]);
SM := HighestWeightModule(U, [3 * (kk - 1), 0]);
// Find Groebner basis for first few degrees of irreducible integrable
// module using Serre relations.
max_deg := 30 + 10 * kk;
urels := [f0^2 * f1 - GaussianBinomial(2, 1, q)*f0*f1*f0 + f1*f0^2,
f0^2 * f2 - GaussianBinomial(2, 1, q)*f0*f2*f0 + f2*f0^2,
f1^2 * f0 - GaussianBinomial(2, 1, q)*f1*f0*f1 + f0*f1^2,
f1^2 * f2 - GaussianBinomial(2, 1, q)*f1*f2*f1 + f2*f1^2,
f2^2 * f0 - GaussianBinomial(2, 1, q)*f2*f0*f2 + f0*f2^2,
f2^2 * f1 - GaussianBinomial(2, 1, q)*f2*f1*f2 + f1*f2^2];
irels := [f1^(dot(pweight, <1, -1, 0>) + 1),
f2^(dot(pweight, <0, 1, -1>) + 1)];
trels := [f0^2,
f0 * f1 * f0, f0 * f2 * f0,
f0 * f1^2 * f0, f0 * f1 * f2 * f0, f0 * f2 * f1 * f0,
f0 * f2^2 * f0, f0 * f1^3 * f0, f0 * f1^2 * f2 * f0,
f0 * f2 * f1^2 * f0, f0 * f2^3 * f0, f0 * f1^4 * f0,
f0 * f1^3 * f2 * f0, f0 * f1^2 * f2 * f1 * f0,
f0 * f1 * f2 * f1^2 * f0, f0 * f1^2 * f2^2 * f0,
f0 * f2^2 * f1^2 * f0, f0 * f1 * f2 * f1 * f2 * f0,
f0 * f2 * f1 * f2 * f1 * f0, f0 * f1 * f2^3 * f0,
f0 * f2 * f1 * f2^2 * f0, f0 * f2^2 * f1 * f2 * f0,
f0 * f2^3 * f1 * f0, f0 * f2^4 * f0];
I_gens := [p^2, p * f0, p * f1, p * f2] cat urels cat [i * p : i in irels] cat trels;
I := ideal<M | I_gens>;
gb := GroebnerBasis(I_gens, max_deg);
lgb := [LeadingMonomial(p) : p in gb];
// Find basis of monomials for first few degrees of irreducible
// integrable module.
monomials := [[p]];
vars := [f2, f1, f0, p];
for i in [2..max_deg] do
monomials[i] := [r * s : r in vars, s in monomials[i - 1] | NormalForm(r * s, lgb) ne 0];
end for;
// Compute weights of each monomial.
mono_list := [];
weights := [];
loop_weights := [];
mono_idx := 1;
for deg_mono in monomials do
for mono in deg_mono do
mono_list[mono_idx] := mono;
weights[mono_idx] := get_weight_vect(mono, pweight, plevel);
loop_weights[mono_idx] := get_loop_weight(mono);
mono_idx := mono_idx + 1;
end for;
end for;
num_mono := mono_idx - 1;
// Compute actions of generators e_0, e_1, and e_2.
e_mat := [ ];
for i in [0..2] do
e_mat[i + 1] := [];
for idx in [1..num_mono] do
mult_res := get_emult(mono_list[idx], i, pweight, plevel);
if not(mult_res eq 0) then
norm_mult_res := NormalForm(mult_res, gb);
e_mat[i + 1][idx] := [];
e_mat[i + 1][idx] := term_to_vector(norm_mult_res, mono_list);
else
e_mat[i + 1][idx] := [];
for idx2 in [1..num_mono] do
e_mat[i + 1][idx][idx2] := Qq!0;
end for;
end if;
end for;
end for;
// Compute actions of generators e_0, e_1, and e_2 in tensor product.
// The coproduct is \Delta(e_i) = e_i \ot 1 + q^{e_i} \ot e_i.
e_tensmat := [];
for i in [0..2] do
e_tensmat[i + 1] := [];
for idx in [1..num_mono] do
e_tensmat[i + 1][idx] := [];
for j in [1..num_mono] do
e_tensmat[i + 1][idx][j] := e_mat[i + 1][idx][j];
end for;
shifted_wt := deloop_weight(get_e_weight_gen(i)) + sub(pweight, deloop_weight(get_weight_vect(mono_list[idx], pweight, plevel)));
if is_valid_sym_weight(shifted_wt, kk) and is_valid_sing_weight(mono_list[idx], pweight, plevel, kk) then
e_tensmat[i + 1][idx][idx] := q^(get_weight(mono_list[idx], i, pweight, plevel)) * get_e_trans_coeff(SM, sub(pweight, deloop_weight(get_weight_vect(mono_list[idx], pweight, plevel))), i);
end if;
end for;
end for;
// Filter rows of the matrix actions of e_0, e_1, e_2 to include only
// those landing in the degree 0 piece.
y_monos := [];
y_seq := [];
for idx in [1..3] do
y_seq[idx] := [];
i_count := 1;
for i in [1..num_mono] do
if is_valid_sing_weight(mono_list[i], pweight, plevel, kk) then
y_seq[idx][i_count] := [];
y_monos[i_count] := mono_list[i];
j_count := 1;
for j in [1..num_mono] do
if is_valid_sing_weight(mono_list[j], pweight, plevel, kk) then
if (loop_weights[j] eq 0) or not(idx - 1 eq 0) then
y_seq[idx][i_count][j_count] := e_tensmat[idx][i][j];
else
y_seq[idx][i_count][j_count] := Qq!0;
end if;
j_count := j_count + 1;
end if;
end for;
i_count := i_count + 1;
end if;
end for;
end for;
// Compute the singular vector up to degree 1.
y0 := Matrix(y_seq[1]);
y1 := Matrix(y_seq[2]);
y2 := Matrix(y_seq[3]);
yy := HorizontalJoin(HorizontalJoin(y0, y1), y2);
yy_trig := HorizontalJoin(y1, y2);
kernel := Kernel(yy);
ker_trig := Kernel(HorizontalJoin(y1, y2));
sv_temp := Basis(kernel)[1];
sing_vect := M!0;
for i in [1.. (# y_monos)] do
sing_vect := sing_vect + sv_temp[i] * y_monos[i];
end for;
// Compute the intertwiner up to first order
inter_mat := [];
for i in [1..num_mono] do
inter_mat[i] := term_to_vector(get_inter_val(sing_vect, mono_list[i], SM, pweight, plevel, gb), mono_list);
end for;
// Compute trace up to first order
trace := A!0;
trace_parts := [];
for i in [1..num_mono] do
trace_parts[i] := inter_mat[i][i] * qlam1^(get_fund_weight(mono_list[i], 1, pweight, plevel)) * qlam2^(get_fund_weight(mono_list[i], 2, pweight, plevel)) * qomg^(-loop_weights[i]);
trace := trace + trace_parts[i];
end for;
return trace, trace_parts;
end function;
for kk in [2..4] do
time print kk, get_trace(kk) / get_tnorm(kk);
end for;