-
Notifications
You must be signed in to change notification settings - Fork 0
/
denominator-series-2.mag
362 lines (333 loc) · 11.4 KB
/
denominator-series-2.mag
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// This program computes a series expansion for the affine Macdonald denominator
// for U_q(sl_2 hat) as defined in the paper:
//
// P. Etingof and A. Kirillov Jr. On the affine analogue of Jack and Macdonald
// polynomials. Duke Math. J., 78(2):229-256, 1995.
//
// It provides computational evidence for the affine Macdonald denominator
// conjecture given in the paper:
//
// E. M. Rains, Y. Sun, and A. Varchenko. Affine Macdonald conjectures and
// special values of Felder-Varchenko functions. Preprint, 2016.
//
// The expansion is done to first order in q^{-2\omega}. The computation is
// done by computing the first order expansion of a singular vector in
//
// L_{k - 1, 2(k - 1)} \otimes L_{2(k - 1)}(z),
//
// where L_{k - 1, 2(k - 1)} is an integrable irreducible module for
// U_q(sl_2 hat) and L_{2(k - 1)}(z) is an evaluation module for U_q(sl_2 hat).
SetEchoInput(true);
ZZ := Integers();
F0 := Rationals();
Qq<q> := FunctionField(F0, 1);
M<f0, f1, p> := FreeAlgebra(Qq, 3);
A<qlam, qomg> := FunctionField(Qq, 2);
get_weight := function(mono, idx, pweight, plevel)
ans := 0;
for let_idx in [1..Length(mono)] do
if (idx eq 1 and mono[let_idx] eq f1) or (idx eq 0 and mono[let_idx] eq f0) then
ans := ans - 2;
elif not(mono[let_idx] eq p) then
ans := ans + 2;
else
if idx eq 1 then
ans := ans + pweight;
else
ans := ans - pweight + plevel;
end if;
end if;
end for;
return ans;
end function;
get_loop_weight := function(mono)
ans := 0;
for let_idx in [1..Length(mono)] do
if mono[let_idx] eq f0 then
ans := ans - 1;
end if;
end for;
return ans;
end function;
get_ecomm := function(let, idx, weight)
if (idx eq 1 and let eq f0) or (idx eq 0 and let eq f1) then
return 0;
else
return (q^weight - 1/q^weight) / (q - 1/q);
end if;
end function;
get_emult_mono := function(mono, idx, pweight, plevel)
ans := 0;
for let_idx in [1..Length(mono) - 1] do
prev := 1;
for idx2 in [1..let_idx - 1] do
prev := prev * mono[idx2];
end for;
after := 1;
for idx3 in [let_idx + 1..Length(mono)] do
after := after * mono[idx3];
end for;
weight := get_weight(after, idx, pweight, plevel);
comm := get_ecomm(mono[let_idx], idx, weight);
ans := ans + prev * comm * after;
end for;
return ans;
end function;
get_emult := function(term, idx, pweight, plevel)
ans := 0;
for mono in Monomials(term) do
ans := ans + MonomialCoefficient(term, mono) * get_emult_mono(mono, idx, pweight, plevel);
end for;
return ans;
end function;
term_to_vector := function(term, monos)
ans := [ MonomialCoefficient(term, mono) : mono in monos ];
return ans;
end function;
qbinom := function(n)
nn := ZZ!n;
return (q^nn - 1/q^nn)/(q - 1/q);
end function;
get_trans_coeff := function(htens_weight, curr_weight, idx)
if idx eq 1 then
if htens_weight eq curr_weight then
return 0;
else
return qbinom((htens_weight - curr_weight) / 2);
end if;
else
if htens_weight eq (- curr_weight) then
return 0;
else
return qbinom((htens_weight + curr_weight) / 2);
end if;
end if;
end function;
get_f_trans_coeff := function(htens_weight, curr_weight, idx)
if idx eq 0 then
if htens_weight eq curr_weight then
return 0;
else
return qbinom((htens_weight - curr_weight) / 2);
end if;
else
if htens_weight eq (- curr_weight) then
return 0;
else
return qbinom((htens_weight + curr_weight) / 2);
end if;
end if;
end function;
get_tens_mult := function(vect, gen, htens_weight, pweight, plevel, curr_weight0, curr_weight1, gb)
ans := M!0;
if gen eq f1 then
gen_idx := 1;
else
gen_idx := 0;
end if;
for mono in Monomials(vect) do
ans := ans + MonomialCoefficient(vect, mono) * get_f_trans_coeff(htens_weight, curr_weight1 - get_weight(mono, 1, pweight, plevel), gen_idx) * mono;
if gen_idx eq 1 then
weight_exp := curr_weight1 - get_weight(mono, 1, pweight, plevel);
else
weight_exp := -1 * curr_weight1 + get_weight(mono, 1, pweight, plevel);
end if;
ans := ans + MonomialCoefficient(vect, mono) * q^(- weight_exp) * NormalForm(gen * mono, gb);
end for;
return ans;
end function;
// Given the singular vector, compute the value of the intertwiner applied to
// the monomial mono.
get_inter_val := function(sing_vect, mono, htens_weight, pweight, plevel, gb)
curr_weight0 := plevel - pweight;
curr_weight1 := pweight;
ans := sing_vect;
for idx in [1..Length(mono)] do
idx_mod := Length(mono) - idx + 1;
if not(mono[idx_mod] eq p) then
ans := get_tens_mult(ans, mono[idx_mod], htens_weight, pweight, plevel, curr_weight0, curr_weight1, gb);
if mono[idx_mod] eq f1 then
curr_weight1 := curr_weight1 - 2;
curr_weight0 := curr_weight0 + 2;
else
curr_weight0 := curr_weight0 - 2;
curr_weight1 := curr_weight1 + 2;
end if;
end if;
end for;
return ans;
end function;
// Compute the naive analogue of the trigonometric Macdonald denominator.
get_tnorm := function(kk)
ans := qlam^(kk - 1);
for i in [1..kk - 1] do
ans := ans * (1 - q^(2 * i) / qlam^2);
end for;
return ans;
end function;
// Return the trace of the U_q(sl_2 hat) intertwiner
//
// L_{kk - 1, 2(kk - 1)} \to L_{kk - 1, 2(kk - 1)} \otimes L_{2(kk - 1)}(z)
//
get_trace := function(kk)
pweight := kk - 1;
plevel := 2 * (kk - 1);
htens_weight := 2 * (kk - 1);
// Find Groebner basis for first few degrees of irreducible integrable
// module using Serre relations.
urels := [f0^3 * f1 - GaussianBinomial(3, 1, q)*f0*f0*f1*f0 + GaussianBinomial(3, 2, q)*f0*f1*f0*f0 - f1*f0^3,
f1^3 * f0 - GaussianBinomial(3, 1, q)*f1*f1*f0*f1 + GaussianBinomial(3, 2, q)*f1*f0*f1*f1 - f0*f1^3];
irels := [f1^(pweight + 1)];
trels := [f0^2, f0 * f1 * f0, f0 * f1^2 * f0, f0 * f1^3 * f0, f0 * f1^4 * f0];
I_gens := [p^2, p * f0, p * f1] cat urels cat [i * p : i in irels] cat trels;
I := ideal<M | I_gens>;
gb := GroebnerBasis(I_gens, pweight + 5);
lgb := [LeadingMonomial(p) : p in gb];
// Find basis of monomials for first few degrees of irreducible
// integrable module.
monomials := [[p]];
vars := [f1, f0, p];
for i in [2..pweight+4] do
monomials[i] := [r * s : r in vars, s in monomials[i - 1] | NormalForm(r * s, lgb) ne 0];
end for;
// Compute weights of each monomial.
mono_list := [];
weights0 := [];
weights1 := [];
loop_weights := [];
mono_idx := 1;
for deg_mono in monomials do
for mono in deg_mono do
mono_list[mono_idx] := mono;
weights0[mono_idx] := get_weight(mono, 0, pweight, plevel);
weights1[mono_idx] := get_weight(mono, 1, pweight, plevel);
loop_weights[mono_idx] := get_loop_weight(mono);
mono_idx := mono_idx + 1;
end for;
end for;
num_mono := mono_idx - 1;
// Compute actions of generators e_0 and e_1 on L_{kk - 1, 2(kk - 1)}.
e0_mat := [ ];
e1_mat := [ ];
for idx in [1..num_mono] do
mult0_res := get_emult(mono_list[idx], 0, pweight, plevel);
if not(mult0_res eq 0) then
norm_mult0_res := NormalForm(mult0_res, gb);
e0_mat[idx] := [];
e0_mat[idx] := term_to_vector(norm_mult0_res, mono_list);
else
e0_mat[idx] := [];
for idx2 in [1..num_mono] do
e0_mat[idx][idx2] := Qq!0;
end for;
end if;
mult1_res := get_emult(mono_list[idx], 1, pweight, plevel);
if not(mult1_res eq 0) then
norm_mult1_res := NormalForm(mult1_res, gb);
e1_mat[idx] := [];
e1_mat[idx] := term_to_vector(norm_mult1_res, mono_list);
else
e1_mat[idx] := [];
for idx2 in [1..num_mono] do
e1_mat[idx][idx2] := Qq!0;
end for;
end if;
end for;
// Compute actions of generators e_0 and e_1 on the tensor product
//
// L_{kk - 1, 2(kk - 1)} \otimes L_{2(kk - 1)}(z).
//
// Recall that the coproduct is given by
//
// \Delta(e_i) = e_i \otimes 1 + q^{h_i} \otimes e_i
//
e0_tensmat := [];
e1_tensmat := [];
for i in [1..num_mono] do
e0_tensmat[i] := [];
for j in [1..num_mono] do
e0_tensmat[i][j] := e0_mat[i][j];
end for;
e0_tensmat[i][i] := q^(get_weight(mono_list[i], 0, pweight, plevel)) * get_trans_coeff(htens_weight, pweight - get_weight(mono_list[i], 1, pweight, plevel), 0);
e1_tensmat[i] := [];
for j in [1..num_mono] do
e1_tensmat[i][j] := e1_mat[i][j];
end for;
e1_tensmat[i][i] := q^(get_weight(mono_list[i], 1, pweight, plevel)) * get_trans_coeff(htens_weight, pweight - get_weight(mono_list[i], 1, pweight, plevel), 1);
end for;
x0 := Matrix(e0_tensmat);
x1 := Matrix(e1_tensmat);
xx := HorizontalJoin(x0, x1);
// Filter rows of the matrix actions of e_0 and e_1 to include only
// those landing in the degree 0 piece of L_{kk - 1, 2(kk - 1)}.
y_monos := [];
y0_seq := [];
y1_seq := [];
i_count := 1;
for i in [1..num_mono] do
if (weights1[i] le pweight + htens_weight) and (weights1[i] ge pweight - htens_weight) then
y1_seq[i_count] := [];
y_monos[i_count] := mono_list[i];
j_count := 1;
for j in [1..num_mono] do
if (weights1[j] le pweight + htens_weight) and (weights1[j] ge pweight - htens_weight) then
y1_seq[i_count][j_count] := x1[i][j];
j_count := j_count + 1;
end if;
end for;
i_count := i_count + 1;
end if;
end for;
i_count := 1;
for i in [1..num_mono] do
if (weights1[i] le pweight + htens_weight) and (weights1[i] ge pweight - htens_weight) then
y0_seq[i_count] := [];
j_count := 1;
for j in [1..num_mono] do
if (weights1[j] le pweight + htens_weight) and (weights1[j] ge pweight - htens_weight) then
if (loop_weights[j] eq 0) then
y0_seq[i_count][j_count] := x0[i][j];
else
y0_seq[i_count][j_count] := Qq!0;
end if;
j_count := j_count + 1;
end if;
end for;
i_count := i_count + 1;
end if;
end for;
// Compute the singular vector up to degree 1.
y0 := Matrix(y0_seq);
y1 := Matrix(y1_seq);
yy := HorizontalJoin(y0, y1);
kernel := Kernel(yy);
sv_temp := Basis(kernel)[1];
sing_vect := M!0;
for i in [1.. (# y_monos)] do
sing_vect := sing_vect + sv_temp[i] * y_monos[i];
end for;
// Compute the intertwiner up to first order
inter_mat := [];
for i in [1..num_mono] do
inter_mat[i] := term_to_vector(get_inter_val(sing_vect, mono_list[i], htens_weight, pweight, plevel, gb), mono_list);
end for;
// Compute trace up to first order
trace := A!0;
trace_parts := [];
for i in [1..num_mono] do
trace_parts[i] := inter_mat[i][i] * qlam^(weights1[i]) * qomg^(-loop_weights[i]);
trace := trace + inter_mat[i][i] * qlam^(weights1[i]) * qomg^(-loop_weights[i]);
end for;
return trace, trace_parts;
end function;
// input parameters
kk := 2;
trace, trace_parts := get_trace(kk);
// If kk = 2, test that computed answer matches theoretical prediction
conj2 := (qlam - q^2 /qlam) * (1 + qomg * (q^4 - 2 * q^2 - qlam^2 * q^2 - q^2 / qlam^2));
if kk eq 2 then
conj2 - trace;
end if;
for i in [2..15] do
time print, get_trace(i) / get_tnorm(i);
end for;