-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_efficient_red_blue.py
180 lines (148 loc) · 6.66 KB
/
test_efficient_red_blue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import time
import signal
import cv2
import os
import torch
from Arducamlib.Arducam import *
from Arducamlib.ImageConvert import *
from classification import efficient_model
def judge_from_window(pos_list):
count = {}
for i in set(pos_list):
count[i] = pos_list.count(i)
max_direction = max(count, key=count.get)
return max_direction
def is_mostly_white(img, threshold):
# 对图片进行灰度化,将三通道变成单通道
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算图片中所有像素的总和
total = np.sum(img)
# 计算图片中所有元素的个数
count = img.size
# 计算平均值,即每个元素的平均像素值
mean = total / count
# 如果平均值大于阈值,则返回True,否则返回False
return mean > threshold
def run(
config_path,
weight_path,
model_type='onnx',
data_path = None,
device='cpu',
half=False,
imgsz=32
):
# Set camera config
config_file = config_path
verbose = False
# preview_width = -1
no_preview = False
# Openvideo
video = cv2.VideoCapture('/home/yunhaoshui/FootKick/test.mp4')
conf_threshold = 0.7
ret = True
prev = None
prev_isempty = True
action = None
window_size_action = 3
window_size_point = 7
from collections import deque
window = deque(maxlen=window_size_action)
window_b = deque(maxlen=window_size_point)
window_r = deque(maxlen=window_size_point)
# Initialize Yolov5
model = efficient_model.build_model(weight_path, device)
total_time = []
cls_time = []
LK_time = []
# Begin detection
while ret:
ret, image = video.read()
frame_count=video.get(cv2.CAP_PROP_FRAME_COUNT)
# ret, data, cfg = camera.read()
# display_fps(0)
if ret:
# image = convert_image(data, cfg, camera.color_mode)
image = np.array(image[:,:,:3])
image0 = np.array(image)
start_time0 = time.time()
result = efficient_model.inference(model, image, imgsz)
cls = np.argmax(result)
end_time0 = time.time()
clstime = end_time0 - start_time0
# print('yolo time:',round((yolotime)*1000,2),'ms')
# image = preprocess.DBSCAN_denoise(image, 1.4,5)
dire_vec1 = np.array([])
position = None
white = is_mostly_white(image,245)
if white:
cv2.putText(image0, 'nothing', (200,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3)
print('nothing')
position = None
if not white:
if cls == 0: # means not shoe
cv2.putText(image0, 'unshoe', (200,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3)
print('not shoe')
position = None
if cls == 1: # means there exists a shoe
cv2.putText(image0, 'shoe', (200,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 3)
start_time = time.time()
cur = cv2.resize(image,(16,16))
mask_red = cur[:,:,0]
mask_blue = cur[:,:,2]
cur_r = np.argwhere(mask_red < 240)
cur_b = np.argwhere(mask_blue < 240)
center_b = cur_b.mean(axis=0) #(y,x)
center_r = cur_r.mean(axis=0)
window_b.append(center_b)
window_r.append(center_r)
if len(window_r) == window_size_point and len(window_b) == window_size_point:
center_b_mean = np.mean(list(window_r), axis=0)
center_r_mean = np.mean(list(window_b), axis=0)
cv2.circle(image0, (int(center_b_mean[1]*324/16), int(center_b_mean[0]*248/16)), 10, (255, 0, 0), -1)
cv2.circle(image0, (int(center_r_mean[1]*324/16), int(center_r_mean[0]*248/16)), 10, (0, 0, 255), -1)
VEC = center_b_mean-center_r_mean
print(VEC)
dire_vec1 = np.copy(VEC)
dire_vec1[0] = VEC[1]
dire_vec1[1] = VEC[0]
dire = dire_vec1 if len(dire_vec1) !=0 else [0,0]
if abs(dire[0]) > abs(dire[1]):
if dire[0] > 0:
position = 'right'
if dire[0] <= 0:
position = 'left'
if abs(dire[0]) <= abs(dire[1]):
if dire[1] > 0:
position = 'down'
if dire[1] <= 0:
position = 'up'
end_time = time.time()
LKtime = end_time-start_time
# print('current direc:',position,'LK process time:', round((LK_time)*1000,2),'ms')
total_time.append(round((clstime+LKtime)*1000,2))
cls_time.append(round((clstime)*1000,2))
LK_time.append(round((LKtime)*1000,2))
print(
'total_time', round((clstime+LKtime)*1000,2),'ms',
' clstime:', round((clstime)*1000,2),'ms',
' direction time:',round((LKtime)*1000,2),'ms'
)
window.append(position)
if len(window) == window_size_action:
current_window = list(window)
action = judge_from_window(current_window)
cv2.putText(image0, str(action), (20,20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), 3)
cv2.imshow("Arducam", image0) #248,324,4
cv2.waitKey(20)
else:
print('average process time:', np.average(total_time),'ms',
'average cls time:', np.average(cls_time),'ms',
'average direction time:', np.average(LK_time),'ms')
return
if __name__ == "__main__":
config_path = "/home/yunhaoshui/FootKick/resources/SDVS320_RGB_324x248.cfg"
weight_path = "/home/yunhaoshui/FootKick/resources/efficientnet_imgsz32.onnx"
data_path = '/home/yunhaoshui/FootKick/resources/footkick_openmmlab.yaml'
run(config_path=config_path, weight_path=weight_path, data_path =data_path)