forked from JunshengFu/tracking-with-Extended-Kalman-Filter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FusionEKF.cpp
170 lines (132 loc) · 4.62 KB
/
FusionEKF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include "FusionEKF.h"
#include "tools.h"
#include "Eigen/Dense"
#include <iostream>
using namespace std;
using Eigen::MatrixXd;
using Eigen::VectorXd;
using std::vector;
Tools tools;
/*
* Constructor.
*/
FusionEKF::FusionEKF() {
is_initialized_ = false;
previous_timestamp_ = 0;
// initializing matrices
R_laser_ = MatrixXd(2, 2);
R_radar_ = MatrixXd(3, 3);
H_laser_ = MatrixXd(2, 4);
H_jacobian = MatrixXd(3, 4);
//measurement covariance matrix - laser
R_laser_ << 0.0225, 0,
0, 0.0225;
//measurement covariance matrix - radar
R_radar_ << 0.09, 0, 0,
0, 0.0009, 0,
0, 0, 0.09;
/**
TODO:
* Finish initializing the FusionEKF.
* Set the process and measurement noises
*/
H_laser_ << 1, 0, 0, 0,
0, 1, 0, 0;
// initialize the kalman filter variables
ekf_.P_ = MatrixXd(4, 4);
ekf_.P_ << 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1000, 0,
0, 0, 0, 1000;
ekf_.F_ = MatrixXd(4, 4);
ekf_.F_ << 1, 0, 1, 0,
0, 1, 0, 1,
0, 0, 1, 0,
0, 0, 0, 1;
// set measurement noises
noise_ax = 9;
noise_ay = 9;
}
/**
* Destructor.
*/
FusionEKF::~FusionEKF() {}
void FusionEKF::ProcessMeasurement(const MeasurementPackage &measurement_pack) {
/*****************************************************************************
* Initialization
****************************************************************************/
if (!is_initialized_) {
// first measurement
// cout << "EKF: " << endl;
ekf_.x_ = VectorXd(4);
if (measurement_pack.sensor_type_ == MeasurementPackage::RADAR) {
/**
Convert radar from polar to cartesian coordinates and initialize state.
*/
float rho = measurement_pack.raw_measurements_[0]; // range: radial distance from origin
float phi = measurement_pack.raw_measurements_[1]; // bearing: angle between rho and x axis
float rho_dot = measurement_pack.raw_measurements_[2]; // radial velocity: change of rho
// ekf_.x_ << rho * cos(phi), rho * sin(phi), rho_dot * cos(phi), rho_dot * sin(phi);
// phi is not the direction of the speed, it is better to set vx and vy to 0
ekf_.x_ << rho * cos(phi), rho * sin(phi), 0, 0; // x, y, vx, vy
}
else if (measurement_pack.sensor_type_ == MeasurementPackage::LASER) {
/**
Initialize state.
*/
ekf_.x_ << measurement_pack.raw_measurements_[0], measurement_pack.raw_measurements_[1], 0, 0; // x, y, vx, vy
}
previous_timestamp_ = measurement_pack.timestamp_;
// done initializing, no need to predict or update
is_initialized_ = true;
return;
}
/*****************************************************************************
* Prediction
****************************************************************************/
/**
* Update the state transition matrix F according to the new elapsed time.
- Time is measured in seconds.
* Update the process noise covariance matrix.
* Use noise_ax = 9 and noise_ay = 9 for your Q matrix.
*/
// compute the time elapsed between the current and previous measurements
float dt = (measurement_pack.timestamp_ - previous_timestamp_) / 1000000.0; // in seconds
previous_timestamp_ = measurement_pack.timestamp_;
float dt_2 = dt * dt;
float dt_3 = dt_2 * dt;
float dt_4 = dt_3 * dt;
// Modify the F matrix so that the time is integrated
ekf_.F_(0, 2) = dt;
ekf_.F_(1, 3) = dt;
//set the process covariance matrix Q
ekf_.Q_ = MatrixXd(4, 4);
ekf_.Q_ << dt_4/4*noise_ax, 0, dt_3/2*noise_ax, 0,
0, dt_4/4*noise_ay, 0, dt_3/2*noise_ay,
dt_3/2*noise_ax, 0, dt_2*noise_ax, 0,
0, dt_3/2*noise_ay, 0, dt_2*noise_ay;
ekf_.Predict();
/*****************************************************************************
* Update
****************************************************************************/
/**
* Use the sensor type to perform the update step.
* Update the state and covariance matrices.
*/
if (measurement_pack.sensor_type_ == MeasurementPackage::RADAR) {
// Radar updates
H_jacobian = tools.CalculateJacobian(ekf_.x_);
ekf_.H_ = H_jacobian;
ekf_.R_ = R_radar_;
ekf_.UpdateEKF(measurement_pack.raw_measurements_);
}
else {
// Laser updates
ekf_.H_ = H_laser_;
ekf_.R_ = R_laser_;
ekf_.Update(measurement_pack.raw_measurements_);
}
// print the output
// cout << "x_ = " << ekf_.x_ << endl;
// cout << "P_ = " << ekf_.P_ << endl;
}