forked from mynlp/cst_captioning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopts.py
345 lines (325 loc) · 9.94 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import sys
import argparse
def parse_opts():
parser = argparse.ArgumentParser()
parser.add_argument(
'--train_label_h5',
type=str,
help='path to the h5file containing the preprocessed dataset')
parser.add_argument(
'--val_label_h5',
type=str,
help='path to the h5file containing the preprocessed dataset')
parser.add_argument(
'--test_label_h5',
type=str,
help='path to the h5file containing the preprocessed dataset')
parser.add_argument(
'--train_feat_h5',
type=str,
nargs='+',
help='path to the h5 file containing extracted features')
parser.add_argument(
'--val_feat_h5',
type=str,
nargs='+',
help='path to the h5 file containing extracted features')
parser.add_argument(
'--test_feat_h5',
type=str,
nargs='+',
help='path to the h5 file containing extracted features')
parser.add_argument(
'--train_cocofmt_file',
type=str,
help='Gold captions in MSCOCO format to cal language metrics')
parser.add_argument(
'--val_cocofmt_file',
type=str,
help='Gold captions in MSCOCO format to cal language metrics')
parser.add_argument(
'--test_cocofmt_file',
type=str,
help='Gold captions in MSCOCO format to cal language metrics')
parser.add_argument(
'--train_bcmrscores_pkl',
type=str,
help='Pre-computed Cider-D metric for all captions')
# Optimization: General
parser.add_argument(
'--max_patience',
type=int,
default=5,
help='max number of epoch to run since the minima is detected -- early stopping')
parser.add_argument(
'--batch_size',
type=int,
default=128,
help='Video batch size (there will be x seq_per_img sentences)')
parser.add_argument(
'--test_batch_size',
type=int,
default=32,
help='what is the batch size in number of images per batch? (there will be x seq_per_img sentences)')
parser.add_argument(
'--train_seq_per_img',
type=int,
default=20,
help='number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive.')
parser.add_argument(
'--test_seq_per_img',
type=int,
default=20,
help='number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive.')
parser.add_argument(
'--learning_rate',
type=float,
default=1e-4,
help='learning rate')
parser.add_argument('--lr_update', default=50, type=int,
help='Number of epochs to update the learning rate.')
# Model settings
parser.add_argument(
'--rnn_type',
type=str,
default='lstm',
choices=[
'lstm',
'gru',
'rnn'],
help='type of RNN')
parser.add_argument(
'--rnn_size',
type=int,
default=512,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument(
'--num_lm_layer',
type=int,
default=1,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument(
'--input_encoding_size',
type=int,
default=512,
help='the encoding size of each frame in the video.')
parser.add_argument(
'--max_epochs',
type=int,
default=sys.maxsize,
help='max number of epochs to run for (-1 = run forever)')
parser.add_argument(
'--grad_clip',
type=float,
default=0.25,
help='clip gradients at this value (note should be lower than usual 5 because we normalize grads by both batch and seq_length)')
parser.add_argument(
'--drop_prob_lm',
type=float,
default=0.5,
help='strength of dropout in the Language Model RNN')
# Optimization: for the Language Model
parser.add_argument(
'--optim',
type=str,
default='adam',
help='what update to use? sgd|sgdmom|adagrad|adam')
parser.add_argument(
'--optim_alpha',
type=float,
default=0.8,
help='alpha for adagrad/rmsprop/momentum/adam')
parser.add_argument(
'--optim_beta',
type=float,
default=0.999,
help='beta used for adam')
parser.add_argument(
'--optim_epsilon',
type=float,
default=1e-8,
help='epsilon that goes into denominator for smoothing')
# Evaluation/Checkpointing
parser.add_argument(
'--save_checkpoint_from',
type=int,
default=20,
help='Start saving checkpoint from this epoch')
parser.add_argument(
'--save_checkpoint_every',
type=int,
default=1,
help='how often to save a model checkpoint in epochs?')
parser.add_argument(
'--use_rl',
type=int,
default=0,
help='Use RL training or not')
parser.add_argument(
'--use_rl_after',
type=int,
default=30,
help='Start RL training after this epoch')
parser.add_argument(
'--train_cached_tokens',
type=str,
default=30,
help='Path to idx document frequencies to cal Cider on training data')
parser.add_argument(
'--expand_feat',
type=int,
default=1,
help='To expand features when sampling (to multiple captions)')
parser.add_argument('--model_file', type=str, help='output model file')
parser.add_argument('--result_file', type=str, help='output result file')
parser.add_argument(
'--start_from',
type=str,
default='',
help='Load state from this file to continue training')
parser.add_argument(
'--language_eval',
type=int,
default=1,
help='Evaluate language evaluation')
parser.add_argument(
'--eval_metric',
default='CIDEr',
choices=[
'Loss',
'Bleu_4',
'METEOR',
'ROUGE_L',
'CIDEr',
'MSRVTT'],
help='Evaluation metrics')
parser.add_argument(
'--test_language_eval',
type=int,
default=1,
help='Evaluate language evaluation')
parser.add_argument(
'--print_log_interval',
type=int,
default=20,
help='How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
parser.add_argument(
'--loglevel',
type=str,
default='DEBUG',
choices=[
'DEBUG',
'INFO',
'WARNING',
'ERROR',
'CRITICAL'])
# misc
parser.add_argument(
'--seed',
type=int,
default=123,
help='random number generator seed to use')
parser.add_argument(
'--gpuid',
type=int,
default=7,
help='which gpu to use. -1 = use CPU')
parser.add_argument(
'--num_chunks',
type=int,
default=1,
help='1: no attention, > 1: attention with num_chunks')
parser.add_argument(
'--num_layers',
type=int,
default=1,
help='number of layers in the lstm ')
parser.add_argument(
'--model_type',
type=str,
default='concat',
choices=[
'standard',
'concat',
'manet',
],
help='Type of models')
parser.add_argument(
'--beam_size',
type=int,
default=5,
help='Beam search size')
parser.add_argument(
'--use_ss',
type=int,
default=0,
help='Use schedule sampling')
parser.add_argument(
'--use_ss_after',
type=int,
default=0,
help='Use schedule sampling after this epoch')
parser.add_argument(
'--ss_max_prob',
type=float,
default=0.25,
help='Use schedule sampling')
parser.add_argument(
'--ss_k',
type=float,
default=30.0,
help='plot k/(k+exp(x/k)) from x=0 to 400, k=30')
parser.add_argument(
'--use_mixer',
type=int,
default=1,
help='Use schedule sampling')
parser.add_argument(
'--mixer_from',
type=int,
default=-1,
help='If -1, then an annealing scheme will be used, based on mixer_descrease_every.\
Initially it will set to the max_seq_length (30), and will be gradually descreased to 1.\
If this value is set to 1 from the begininig, then the MIXER approach is not applied')
parser.add_argument(
'--mixer_descrease_every',
type=int,
default=2,
help='Epoch interval to descrease mixing value')
parser.add_argument(
'--use_cst',
type=int,
default=0,
help='Use cst training')
parser.add_argument(
'--use_cst_after',
type=int,
default=0,
help='Start cst training after this epoch')
parser.add_argument(
'--cst_increase_every',
type=int,
default=5,
help='Epoch interval to increase cst baseline')
parser.add_argument(
'--scb_baseline',
type=int,
default=1,
help='which Self-consensus baseline (SCB) to use? 1: GT SCB, 2: Model Sample SCB')
parser.add_argument(
'--scb_captions',
type=int,
default=20,
help='-1: annealing, otherwise using this fixed number to be the number of captions to compute SCB')
parser.add_argument(
'--use_eos',
type=int,
default=0,
help='If 1, keep <EOS> in captions of the reference set')
parser.add_argument(
'--output_logp',
type=int,
default=0,
help='Output average log likehood of the test and GT captions. Used for robustness analysis at test time.')
args = parser.parse_args()
return args