-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathAMD.cs
495 lines (454 loc) · 19.4 KB
/
AMD.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
namespace CSparse.Ordering
{
using CSparse.Properties;
using CSparse.Storage;
using System;
/// <summary>
/// Approximate Minimum Degree (AMD) ordering.
/// </summary>
/// <remarks>
/// See Chapter 7.1 (Minimum degree ordering) in "Direct Methods for Sparse Linear Systems" by Tim Davis.
/// </remarks>
public static class AMD
{
/// <summary>
/// Generate minimum degree ordering of A+A' (if A is symmetric) or A'A.
/// </summary>
/// <param name="A">Column-compressed matrix</param>
/// <param name="order">Column ordering method</param>
/// <returns>amd(A+A') if A is symmetric, or amd(A'A) otherwise, null on
/// error or for natural ordering</returns>
/// <remarks>
/// See Chapter 7.1 (Fill-reducing orderings: Minimum degree ordering) in
/// "Direct Methods for Sparse Linear Systems" by Tim Davis.
/// </remarks>
public static int[] Generate<T>(CompressedColumnStorage<T> A, ColumnOrdering order)
where T : struct, IEquatable<T>, IFormattable
{
return Generate(SymbolicColumnStorage.Create(A), order);
}
/// <summary>
/// Generate minimum degree ordering of A+A' (if A is symmetric) or A'A.
/// </summary>
/// <param name="A">Column-compressed matrix</param>
/// <param name="order">Column ordering method</param>
/// <returns>amd(A+A') if A is symmetric, or amd(A'A) otherwise, null on
/// error or for natural ordering</returns>
/// <remarks>
/// See Chapter 7.1 (Fill-reducing orderings: Minimum degree ordering) in
/// "Direct Methods for Sparse Linear Systems" by Tim Davis.
/// </remarks>
public static int[] Generate(SymbolicColumnStorage A, ColumnOrdering order)
{
int[] Cp, Ci, P, W, nv, next, head, elen, degree, w, hhead;
int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
cnz, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, n;
bool ok;
int h;
n = A.ColumnCount;
if (order == ColumnOrdering.Natural)
{
// TODO: return null here?
return Permutation.Create(n);
}
var C = ConstructMatrix(A, order);
Cp = C.ColumnPointers;
cnz = Cp[n];
// Find dense threshold
dense = Math.Max(16, 10 * (int)Math.Sqrt(n));
dense = Math.Min(n - 2, dense);
// add elbow room to C
if (!C.Resize(cnz + cnz / 5 + 2 * n)) return null;
P = new int[n + 1]; // allocate result
W = new int[n + 1]; // get workspace
w = new int[n + 1];
degree = new int[n + 1];
elen = new int[n + 1]; // Initialized to 0's
// Initialize quotient graph
for (k = 0; k < n; k++)
{
W[k] = Cp[k + 1] - Cp[k];
}
W[n] = 0;
nzmax = C.RowIndices.Length;
Ci = C.RowIndices;
for (i = 0; i <= n; i++)
{
P[i] = -1;
w[i] = 1; // node i is alive
degree[i] = W[i]; // degree of node i
}
next = new int[n + 1];
hhead = new int[n + 1];
head = new int[n + 1];
nv = new int[n + 1];
Array.Copy(P, next, n + 1);
Array.Copy(P, head, n + 1); // degree list i is empty
Array.Copy(P, hhead, n + 1); // hash list i is empty
Array.Copy(w, nv, n + 1); // node i is just one node
mark = Clear(0, 0, w, n); // clear w
elen[n] = -2; // n is a dead element
Cp[n] = -1; // n is a root of assembly tree
w[n] = 0; // n is a dead element
// Initialize degree lists
for (i = 0; i < n; i++)
{
d = degree[i];
if (d == 0) // node i is empty
{
elen[i] = -2; // element i is dead
nel++;
Cp[i] = -1; // i is a root of assembly tree
w[i] = 0;
}
else if (d > dense) // node i is dense
{
nv[i] = 0; // absorb i into element n
elen[i] = -1; // node i is dead
nel++;
Cp[i] = -(n + 2); // FLIP(n)
nv[n]++;
}
else
{
if (head[d] != -1) P[head[d]] = i;
next[i] = head[d]; // put node i in degree list d
head[d] = i;
}
}
while (nel < n) // while (selecting pivots) do
{
// Select node of minimum approximate degree
for (k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) ;
if (next[k] != -1) P[next[k]] = -1;
head[mindeg] = next[k]; // remove k from degree list
elenk = elen[k]; // elenk = |Ek|
nvk = nv[k]; // # of nodes k represents
nel += nvk; // nv[k] nodes of A eliminated
// Garbage collection
if (elenk > 0 && cnz + mindeg >= nzmax)
{
for (j = 0; j < n; j++)
{
if ((p = Cp[j]) >= 0) // j is a live node or element
{
Cp[j] = Ci[p]; // save first entry of object
Ci[p] = -(j + 2); // first entry is now CS_FLIP(j)
}
}
for (q = 0, p = 0; p < cnz;) // scan all of memory
{
if ((j = FLIP(Ci[p++])) >= 0) // found object j
{
Ci[q] = Cp[j]; // restore first entry of object
Cp[j] = q++; // new pointer to object j
for (k3 = 0; k3 < W[j] - 1; k3++)
{
Ci[q++] = Ci[p++];
}
}
}
cnz = q; // Ci [cnz...nzmax-1] now free
}
// Construct new element
dk = 0;
nv[k] = -nvk; // flag k as in Lk
p = Cp[k];
pk1 = (elenk == 0) ? p : cnz; // do in place if elen[k] == 0
pk2 = pk1;
for (k1 = 1; k1 <= elenk + 1; k1++)
{
if (k1 > elenk)
{
e = k; // search the nodes in k
pj = p; // list of nodes starts at Ci[pj]*/
ln = W[k] - elenk; // length of list of nodes in k
}
else
{
e = Ci[p++]; // search the nodes in e
pj = Cp[e];
ln = W[e]; // length of list of nodes in e
}
for (k2 = 1; k2 <= ln; k2++)
{
i = Ci[pj++];
if ((nvi = nv[i]) <= 0) continue; // node i dead, or seen
dk += nvi; // degree[Lk] += size of node i
nv[i] = -nvi; // negate nv[i] to denote i in Lk
Ci[pk2++] = i; // place i in Lk
if (next[i] != -1) P[next[i]] = P[i];
if (P[i] != -1) // remove i from degree list
{
next[P[i]] = next[i];
}
else
{
head[degree[i]] = next[i];
}
}
if (e != k)
{
Cp[e] = -(k + 2); // absorb e into k // FLIP(k)
w[e] = 0; // e is now a dead element
}
}
if (elenk != 0) cnz = pk2; // Ci [cnz...nzmax] is free
degree[k] = dk; // external degree of k - |Lk\i|
Cp[k] = pk1; // element k is in Ci[pk1..pk2-1]
W[k] = pk2 - pk1;
elen[k] = -2; // k is now an element
// Find set differences
mark = Clear(mark, lemax, w, n); // clear w if necessary
for (pk = pk1; pk < pk2; pk++) // scan 1: find |Le\Lk|
{
i = Ci[pk];
if ((eln = elen[i]) <= 0) continue; // skip if elen[i] empty
nvi = -nv[i]; // nv [i] was negated
wnvi = mark - nvi;
for (p = Cp[i]; p <= Cp[i] + eln - 1; p++) // scan Ei
{
e = Ci[p];
if (w[e] >= mark)
{
w[e] -= nvi; // decrement |Le\Lk|
}
else if (w[e] != 0) // ensure e is a live element
{
w[e] = degree[e] + wnvi; // 1st time e seen in scan 1
}
}
}
// Degree update
for (pk = pk1; pk < pk2; pk++) // scan2: degree update
{
i = Ci[pk]; // consider node i in Lk
p1 = Cp[i];
p2 = p1 + elen[i] - 1;
pn = p1;
for (h = 0, d = 0, p = p1; p <= p2; p++) // scan Ei
{
e = Ci[p];
if (w[e] != 0) // e is an unabsorbed element
{
dext = w[e] - mark; // dext = |Le\Lk|
if (dext > 0)
{
d += dext; // sum up the set differences
Ci[pn++] = e; // keep e in Ei
h += e; // compute the hash of node i
}
else
{
Cp[e] = -(k + 2); // aggressive absorb. e.k // FLIP(k)
w[e] = 0; // e is a dead element
}
}
}
elen[i] = pn - p1 + 1; // elen[i] = |Ei|
p3 = pn;
p4 = p1 + W[i];
for (p = p2 + 1; p < p4; p++) // prune edges in Ai
{
j = Ci[p];
if ((nvj = nv[j]) <= 0) continue; // node j dead or in Lk
d += nvj; // degree(i) += |j|
Ci[pn++] = j; // place j in node list of i
h += j; // compute hash for node i
}
if (d == 0) // check for mass elimination
{
Cp[i] = -(k + 2); // absorb i into k // FLIP(k)
nvi = -nv[i];
dk -= nvi; // |Lk| -= |i|
nvk += nvi; // |k| += nv[i]
nel += nvi;
nv[i] = 0;
elen[i] = -1; // node i is dead
}
else
{
degree[i] = Math.Min(degree[i], d); // update degree(i)
Ci[pn] = Ci[p3]; // move first node to end
Ci[p3] = Ci[p1]; // move 1st el. to end of Ei
Ci[p1] = k; // add k as 1st element in of Ei
W[i] = pn - p1 + 1; // new len of adj. list of node i
h = ((h < 0) ? (-h) : h) % n; // finalize hash of i
next[i] = hhead[h]; // place i in hash bucket
hhead[h] = i;
P[i] = h; // save hash of i in last[i]
}
} // scan2 is done
degree[k] = dk; // finalize |Lk|
lemax = Math.Max(lemax, dk);
mark = Clear(mark + lemax, lemax, w, n); // clear w
// Supernode detection
for (pk = pk1; pk < pk2; pk++)
{
i = Ci[pk];
if (nv[i] >= 0) continue; // skip if i is dead
h = P[i]; // scan hash bucket of node i
i = hhead[h];
hhead[h] = -1; // hash bucket will be empty
for (; i != -1 && next[i] != -1; i = next[i], mark++)
{
ln = W[i];
eln = elen[i];
for (p = Cp[i] + 1; p <= Cp[i] + ln - 1; p++) w[Ci[p]] = mark;
jlast = i;
for (j = next[i]; j != -1;) // compare i with all j
{
ok = (W[j] == ln) && (elen[j] == eln);
for (p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
{
if (w[Ci[p]] != mark) ok = false; // compare i and j
}
if (ok) // i and j are identical
{
Cp[j] = -(i + 2); // absorb j into i // FLIP(i)
nv[i] += nv[j];
nv[j] = 0;
elen[j] = -1; // node j is dead
j = next[j]; // delete j from hash bucket
next[jlast] = j;
}
else
{
jlast = j; // j and i are different
j = next[j];
}
}
}
}
// Finalize new element
for (p = pk1, pk = pk1; pk < pk2; pk++) // finalize Lk
{
i = Ci[pk];
if ((nvi = -nv[i]) <= 0) continue; // skip if i is dead
nv[i] = nvi; // restore nv[i]
d = degree[i] + dk - nvi; // compute external degree(i)
d = Math.Min(d, n - nel - nvi);
if (head[d] != -1) P[head[d]] = i;
next[i] = head[d]; // put i back in degree list
P[i] = -1;
head[d] = i;
mindeg = Math.Min(mindeg, d); // find new minimum degree
degree[i] = d;
Ci[p++] = i; // place i in Lk
}
nv[k] = nvk; // # nodes absorbed into k
if ((W[k] = p - pk1) == 0) // length of adj list of element k
{
Cp[k] = -1; // k is a root of the tree
w[k] = 0; // k is now a dead element
}
if (elenk != 0) cnz = p; // free unused space in Lk
}
// Postordering
for (i = 0; i < n; i++) Cp[i] = -(Cp[i] + 2); // fix assembly tree // FLIP(Cp[i])
for (j = 0; j <= n; j++) head[j] = -1;
for (j = n; j >= 0; j--) // place unordered nodes in lists
{
if (nv[j] > 0) continue; // skip if j is an element
next[j] = head[Cp[j]]; // place j in list of its parent
head[Cp[j]] = j;
}
for (e = n; e >= 0; e--) // place elements in lists
{
if (nv[e] <= 0) continue; // skip unless e is an element
if (Cp[e] != -1)
{
next[e] = head[Cp[e]]; // place e in list of its parent
head[Cp[e]] = e;
}
}
for (k = 0, i = 0; i <= n; i++) // postorder the assembly tree
{
if (Cp[i] == -1)
{
k = GraphHelper.TreeDepthFirstSearch(i, k, head, next, P, w);
}
}
return P;
}
private static int FLIP(int i) { return -(i) - 2; }
// clear w
private static int Clear(int mark, int lemax, int[] w, int n)
{
int k;
if (mark < 2 || (mark + lemax < 0))
{
for (k = 0; k < n; k++)
{
if (w[k] != 0)
{
w[k] = 1;
}
}
mark = 2;
}
return (mark); // at this point, w [0..n-1] < mark holds
}
// keep off-diagonal entries; drop diagonal entries
private static bool KeepOffDiag(int i, int j)
{
return (i != j);
}
// Construct matrix C
private static SymbolicColumnStorage ConstructMatrix(SymbolicColumnStorage A, ColumnOrdering order)
{
SymbolicColumnStorage result = null;
// Compute A'
var AT = A.Transpose();
int m = A.RowCount;
int n = A.ColumnCount;
if (order == ColumnOrdering.MinimumDegreeAtPlusA)
{
if (n != m)
{
throw new ArgumentException(Resources.MatrixSquare, "A");
}
// Return A+A'
result = A.Add(AT);
}
else if (order == ColumnOrdering.MinimumDegreeStS)
{
// Drop dense columns from AT
int dense, p, p2 = 0;
// Find dense threshold
dense = Math.Max(16, 10 * (int)Math.Sqrt(n));
dense = Math.Min(n - 2, dense);
var colptr = AT.ColumnPointers;
var rowind = AT.RowIndices;
for (int j = 0; j < m; j++)
{
// Column j of AT starts here.
p = colptr[j];
// New column j starts here.
colptr[j] = p2;
if (colptr[j + 1] - p > dense)
{
// Skip dense column j
continue;
}
for (; p < colptr[j + 1]; p++)
{
rowind[p2++] = rowind[p];
}
}
colptr[m] = p2;
// Return A'*A with no dense rows
result = AT.Multiply(AT.Transpose());
}
else
{
// Return A'*A
result = AT.Multiply(A);
}
// Drop diagonal entries.
result.Keep(KeepOffDiag);
return result;
}
}
}