-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
295 lines (227 loc) · 8.41 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from copy import deepcopy
import gym
import numpy as np
import maggie as mg
import torch
from torch import nn
from torch import optim
class Agent():
def __init__(self, **kwargs):
self.discount = kwargs["discount"]
self.softmax_temperature = kwargs["softmax_temperature"]
self.greedy_epsilon_max = kwargs["greedy_epsilon_max"]
self.greedy_epsilon_decay = kwargs["greedy_epsilon_decay"]
self.greedy_epsilon_min = kwargs["greedy_epsilon_min"]
self.priority_epsilon = kwargs["priority_epsilon"]
self.priority_alpha = kwargs["priority_alpha"]
self.store_size = kwargs["store_size"]
self.n_steps = kwargs["n_steps"]
self.n_episodes = kwargs["n_episodes"]
self.target_update_interval = kwargs["target_update_interval"]
self.n_steps_to_start_training = kwargs["n_steps_to_start_training"]
self.demo_interval = kwargs["demo_interval"]
self.log_interval = kwargs["log_interval"]
self.timeout = kwargs["timeout"]
self.timeout_reward = kwargs["timeout_reward"]
self.optim_lr = kwargs["optim_lr"]
self.optim_beta_m = kwargs["optim_beta_m"]
self.optim_beta_v = kwargs["optim_beta_v"]
self.optim_epsilon = kwargs["optim_epsilon"]
self.n_batches = kwargs["n_batches"]
self.batch_size = kwargs["batch_size"]
self.epochs = kwargs["epochs"]
class Store():
def __init__(self, max_size=1e6):
self.buffer = []
self.max_size = max_size
self.rand_generator = np.random.RandomState(1)
def add(self, item, priority):
if len(self.buffer) == self.max_size:
del self.buffer[0]
self.buffer.append(item)
def sample(self, batch_size):
idxs = self.rand_generator.choice(
np.arange(len(self.buffer)), size=batch_size)
return np.array([self.buffer[idx] for idx in idxs])
# batch = []
# for i in range(batch_size):
# batch.append(self.buffer[np.random.randint(len(self.buffer))])
# return np.array(batch)
# class Net(mg.Module):
# def __init__(self):
# self.linear = linear
# pass
# def forward(self, x):
# return x
def learn(env, agent):
input_size = env.observation_space.shape[0]
output_size = env.action_space.n
print("input:{}, output:{}".format(input_size, output_size))
l1 = nn.Linear(input_size, 256)
l2 = nn.Linear(256, output_size)
torch.nn.init.orthogonal_(l1.weight)
torch.nn.init.zeros_(l1.bias)
torch.nn.init.orthogonal_(l2.weight)
torch.nn.init.zeros_(l2.bias)
qnet = nn.Sequential(l1, nn.ReLU(), l2)
# qnet = nn.Sequential(
# nn.Linear(input_size, 128),
# nn.ReLU(),
# nn.Linear(128, 128),
# nn.ReLU(),
# nn.Linear(128, output_size))
# qnet_target = deepcopy(qnet)
# optimizer = optim.Adam(qnet.parameters(), lr=agent.learning_rate)
# optimizer = optim.RMSprop(qnet.parameters(), lr=agent.learning_rate)
optimizer = optim.Adam(qnet.parameters(),
lr=agent.optim_lr,
betas=(agent.optim_beta_m,
agent.optim_beta_v),
eps=agent.optim_epsilon
)
store = Store(agent.store_size)
s = env.reset()
step = 0
r_sum = 0
n_episodes = 0
r_sum_window = []
r_sum_window_length = 10
loss = 0
reward_history = []
loss_history = []
for i in range(agent.n_steps):
# act & store
a, s_next, r, done = act(env, agent, qnet, s, step)
store.add((s, a, r, s_next, done), 0)
# loop
if done:
# for logging
n_episodes += 1
r_sum += r
if len(r_sum_window) >= r_sum_window_length:
del r_sum_window[0]
r_sum_window.append(r_sum)
s = env.reset()
r_sum = 0
step = 0
if n_episodes == agent.n_episodes:
break
else:
s = s_next
r_sum += r
step += 1
# learn
if i > agent.batch_size:
qnet_target = deepcopy(qnet)
for _ in range(agent.n_batches):
loss = train(qnet, qnet_target, optimizer, store, agent)
loss_history.append(loss)
# copy net every steps_to_target_update
# if (i + 1) % agent.target_update_interval:
# qnet_target = deepcopy(qnet)
# demo on interval
if step == 0 and (n_episodes + 1) % agent.demo_interval == 0:
print("----- DEMO ----")
last_episode_reward = play(env, agent, qnet, render=True)
print("last episode reward", last_episode_reward)
print("---------------")
# print debug on interval
if (i + 1) % agent.log_interval == 0:
print("-----")
print("step #{}, num episodes played: {}, store size: {} \nloss: {}, last {} episodes avg={} best={} worst={}".format(
i + 1,
n_episodes,
len(store.buffer),
round(loss, 4),
len(r_sum_window),
round(sum(r_sum_window) / len(r_sum_window), 4),
round(max(r_sum_window), 4),
round(min(r_sum_window), 4)
))
reward_history.append(sum(r_sum_window) / len(r_sum_window))
return qnet, reward_history, loss_history
def act(env, agent, qnet, s, current_step):
q = qnet(torch.tensor(s).float())
pi = softmax_policy(
q, agent.softmax_temperature).detach().numpy()
# print(pi)
a = sample_action(pi)
s_next, r, done, info = env.step(a)
if current_step > agent.timeout:
done = True
# r = agent.timeout_reward
return a, s_next, r, done
def play(env, agent, qnet, render=False):
max_step = 1000
step = 0
done = False
s = env.reset()
r_sum = 0
actions = []
while not done and step < max_step:
if render:
env.render()
q = qnet(torch.tensor(s).float())
a = q.argmax().item()
actions.append(a)
s_next, r, done, info = env.step(a)
s = s_next
step += 1
r_sum += r
if render:
print(actions)
s = env.reset()
return r_sum
def sample_action(pi):
return np.random.choice(np.arange(len(pi)), p=pi).item()
def softmax_policy(q_values, tau=1.):
preferences = q_values / tau
max_preference = preferences.max(dim=-1, keepdim=True)[0]
numerator = (preferences - max_preference).exp()
denominator = numerator.sum(dim=-1, keepdim=True)
pi = (numerator / denominator).squeeze()
return pi
# def epsilon_policy(q_values, epsilon_max, epsilon_min, epsilon_decay, step):
# epsilon = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * \
# math.exp(-LAMBDA * self.steps)
# pass
def train(qnet, qnet_target, optimizer, store, agent):
discount = agent.discount
batch_size = agent.batch_size
# mbs = agent.mini_batch_size
epochs = agent.epochs
# loss_fn = mg.nn.huber_loss
# loss_fn = torch.nn.L1Loss
loss_fn = torch.nn.MSELoss()
loss_sum = 0
samples = store.sample(batch_size)
for epoch in range(epochs):
loss_sum = 0
# for i in range(batch_size // mbs):
# start = i * batch_size
# end = (i + 1) * batch_size
# TODO: cleaner code & change to maggie
# s, a, r, s_next, done = samples[start:end].T
s, a, r, s_next, done = samples.T
s, r, s_next, done = map(
lambda arr: torch.tensor(np.vstack(arr)).float(),
(s, r, s_next, done))
a = torch.tensor(np.vstack(a))
# compute delta
q_values_next = qnet_target(s_next)
pi = softmax_policy(q_values_next)
bootstrap_term = (
pi * q_values_next
).sum(dim=-1, keepdim=True) * (1 - done)
q_values = qnet(s)
indexes = torch.arange(
q_values.shape[0]) * q_values.shape[1] + a.squeeze()
q_a = q_values.take(indexes)
q_a_target = (r + discount * bootstrap_term).squeeze()
loss = loss_fn(q_a, q_a_target)
loss.backward()
loss_sum += loss.item()
optimizer.step()
optimizer.zero_grad()
# print("epoch {}, loss: {}".format(epoch, loss_sum))
return loss_sum