you can read different input formats into Seurat Object
Name | Extension |
---|---|
10x hdf5 | .hdf5 |
R data format | .rds |
AnnData Format | .h5ad |
Loom | .loom |
text based market exchange format (MEX) | .mtx |
library(Seurat)
## Warning: package 'Seurat' was built under R version 4.3.3
## Loading required package: SeuratObject
## Warning: package 'SeuratObject' was built under R version 4.3.3
## Loading required package: sp
## Warning: package 'sp' was built under R version 4.3.3
##
## Attaching package: 'SeuratObject'
## The following object is masked from 'package:base':
##
## intersect
library(SeuratDisk)
## Registered S3 method overwritten by 'SeuratDisk':
## method from
## as.sparse.H5Group Seurat
# .RDS format
rds_obj <- readRDS("ependymal_cells.rds")
# hdf5 format
hdf5_obj <-Read10X_h5(filename = "20k_PBMC_3p_HT_nextgem_Chromium_X_filtered_feature_bc_matrix.h5",
use.names = TRUE,
unique.features = TRUE)
seurat_hdf5 <- CreateSeuratObject(counts = hdf5_obj)
# .mtx files
mtx_obj <- ReadMtx(mtx = "raw_feature_bc_matrix/matrix.mtx.gz",
features = "raw_feature_bc_matrix/features.tsv.gz",
cells = "raw_feature_bc_matrix/barcodes.tsv.gz")
seurat_mtx <- CreateSeuratObject(counts = mtx_obj)
# .loom format
loom_obj <- Connect(filename = "CryoPancreatic-human-pancreas-SS2.loom", mode = 'r')
seurat_loom <- as.Seurat(loom_obj)
# AnnData format
Convert("adata_SS2_for_download.h5ad", dest = "h5seurat", overwrite = TRUE)
seurat_anndata <- LoadH5Seurat("adata_SS2_for_download.h5seurat")
fastq files
Still use the GSE183947 dataset : link
click on SRA Run selector on the bottom of the link.
You can save all the srr items by pressing the accession list below “Download”