Skip to content

Latest commit

 

History

History
103 lines (63 loc) · 9.96 KB

js基础-垃圾回收.md

File metadata and controls

103 lines (63 loc) · 9.96 KB

js基础-垃圾回收

垃圾回收与性能

垃圾回收程序会周期性运行,如果内存中分配了很多变量,则可能造成性能损失,因此垃圾回收的时间调度很重要。尤其是在内存有限的移动设备上,垃圾回收有可能会明显拖慢渲染的速度和帧速率。

开发者不知道什么时候运行时会收集垃圾,因此最好的办法是在写代码时就要做到:无论什么时候开始收集垃圾,都能让它尽快结束工作。

现代垃圾回收程序会基于对 JavaScript 运行时环境的探测来决定何时运行。探测机制因引擎而异,但基本上都是根据已分配对象的大小和数量来判断的。比如,根据 V8 团队 2016 年的一篇博文的说法:“在一次完整的垃圾回收之后,V8 的堆增长策略会根据活跃对象的数量外加一些余量来确定何时再次垃圾回收。”

由于调度垃圾回收程序方面的问题会导致性能下降,IE 曾饱受诟病。它的策略是根据分配数,比如分配了 256 个变量、4096 个对象/数组字面量和数组槽位(slot),或者 64KB 字符串。只要满足其中某个条件,垃圾回收程序就会运行。这样实现的问题在于,分配那么多变量的脚本,很可能在其整个生命周期内始终需要那么多变量,结果就会导致垃圾回收程序过于频繁地运行。由于对性能的严重影响,IE7最终更新了垃圾回收程序。 IE7 发布后,JavaScript 引擎的垃圾回收程序被调优为动态改变分配变量、字面量或数组槽位等会触发垃圾回收的阈值。IE7 的起始阈值都与 IE6 的相同。如果垃圾回收程序回收的内存不到已分配的 15%,这些变量、字面量或数组槽位的阈值就会翻倍。如果有一次回收的内存达到已分配的 85%,则阈值重置为默认值。这么一个简单的修改,极大地提升了重度依赖 JavaScript 的网页在浏览器中的性能。

在某些浏览器中是有可能(但不推荐)主动触发垃圾回收的。在 IE 中,window. CollectGarbage()方法会立即触发垃圾回收。在 Opera 7 及更高版本中,调用 window.opera.collect()也会启动垃圾回收程序。

标记清理

JavaScript 最常用的垃圾回收策略是标记清理(mark-and-sweep)。当变量进入上下文,比如在函数内部声明一个变量时,这个变量会被加上存在于上下文中的标记。而在上下文中的变量,逻辑上讲,永远不应该释放它们的内存,因为只要上下文中的代码在运行,就有可能用到它们。当变量离开上下文时,也会被加上离开上下文的标记。

给变量加标记的方式有很多种。比如,当变量进入上下文时,反转某一位;或者可以维护“在上下文中”和“不在上下文中”两个变量列表,可以把变量从一个列表转移到另一个列表。标记过程的实现并不重要,关键是策略。

垃圾回收程序运行的时候,会标记内存中存储的所有变量(记住,标记方法有很多种)。然后,它会将所有在上下文中的变量,以及被在上下文中的变量引用的变量的标记去掉。在此之后再被加上标记的变量就是待删除的了,原因是任何在上下文中的变量都访问不到它们了。随后垃圾回收程序做一次内存清理,销毁带标记的所有值并收回它们的内存。

引用计数

另一种没那么常用的垃圾回收策略是引用计数(reference counting)。其思路是对每个值都记录它被引用的次数。声明变量并给它赋一个引用值时,这个值的引用数为 1。如果同一个值又被赋给另一个变量,那么引用数加 1。类似地,如果保存对该值引用的变量被其他值给覆盖了,那么引用数减 1。当一个值的引用数为 0 时,就说明没办法再访问到这个值了,因此可以安全地收回其内存了。垃圾回收程序下次运行的时候就会释放引用数为 0 的值的内存。

引用计数最早由 Netscape Navigator 3.0 采用,但很快就遇到了严重的问题:循环引用。所谓循环引用,就是对象 A 有一个指针指向对象 B,而对象 B 也引用了对象 A。在标记清理策略下,这不是问题,因为在函数结束后,这两个对象都不在作用域中。而在引用计数策略下,objectA 和 objectB 在函数结束后还会存在,因为它们的引用数永远不会变成 0。如果函数被多次调用,则会导致大量内存永远不会被释放。为此,Netscape 在 4.0 版放弃了引用计数,转而采用标记清理。

引用计数策略的问题还不止于此。在 IE8 及更早版本的 IE 中,并非所有对象都是原生 JavaScript 对象。BOM 和 DOM 中的对象是 C++实现的组件对象模型(COM,Component Object Model)对象,而 COM 对象使用引用计数实现垃圾回收。因此,即使这些版本 IE 的 JavaScript 引擎使用标记清理,JavaScript 存取的 COM 对象依旧使用引用计数。换句话说,只要涉及 COM 对象,就无法避开循环引用问题, DOM 元素的内存永远不会被回收,即使它已经被从页面上删除了也是如此。为避免类似的循环引用问题,应该在确保不使用的情况下切断原生 JavaScript 对象与 DOM 元素之间的连接。为了补救这一点,IE9 把 BOM 和 DOM 对象都改成了 JavaScript 对象,这同时也避免了由于存在两套垃圾回收算法而导致的问题,还消除了常见的内存泄漏现象。

JS与内存

在使用垃圾回收的编程环境中,开发者通常无须关心内存管理。不过,JavaScript 运行在一个内存管理与垃圾回收都很特殊的环境。分配给浏览器的内存通常比分配给桌面软件的要少很多,分配给移动浏览器的就更少了。这更多出于安全考虑而不是别的,就是为了避免运行大量 JavaScript 的网页耗尽系统内存而导致操作系统崩溃。这个内存限制不仅影响变量分配,也影响调用栈以及能够同时在一个线程中执行的语句数量。

将内存占用量保持在一个较小的值可以让页面性能更好。优化内存占用的最佳手段就是保证在执行代码时只保存必要的数据。如果数据不再必要,那么把它设置为 null,从而释放其引用。这也可以叫作解除引用。这个建议最适合全局变量和全局对象的属性, 部变量在超出作用域后会被自动解除引用。

一些操作

1.通过 const 和 let 声明提升性能 ES6 增加这两个关键字不仅有助于改善代码风格,而且同样有助于改进垃圾回收的过程。因为 const let 都以块(而非函数)为作用域,所以相比于使用 var,使用这两个新关键字可能会更早地让垃圾回收程序介入,尽早回收应该回收的内存。在块作用域比函数作用域更早终止的情况下,这就有可能发生。

2.隐藏类和删除操作

运行期间,V8 会将创建的对象与隐藏类关联起来,以跟踪它们的属性特征。能够共享相同隐藏类的对象性能会更好,V8 会针对这种情况进行优化,但不一定总能够做到。避免 JavaScript 的“先创建再补充”(ready-fire-aim)式的动态属性赋值,并在构造函数中一次性声明所有属性。动态删除属性与动态添加属性导致的后果一样。最佳实践是把不想要的属性设置为 null。

3.静态分配与对象池

为了提升 JavaScript 性能,最后要考虑的一点往往就是压榨浏览器了。此时,一个关键问题就是如何减少浏览器执行垃圾回收的次数。开发者无法直接控制什么时候开始收集垃圾,但可以间接控制触发垃圾回收的条件。理论上,如果能够合理使用分配的内存,同时避免多余的垃圾回收,那就可以保住因释放内存而损失的性能。静态分配是优化的一种极端形式。如果你的应用程序被垃圾回收严重地拖了后腿,可以利用它提升性能。但这种情况并不多见。大多数情况下,这都属于过早优化,因此不用考虑。

一个策略是使用对象池。在初始化的某一时刻,可以创建一个对象池,用来管理一组可回收的对象。应用程序可以向这个对象池请求一个对象、设置其属性、使用它,然后在操作完成后再把它还给对象池。由于没发生对象初始化,垃圾回收探测就不会发现有对象更替,因此垃圾回收程序就不会那么频繁地运行。

内存泄漏

1.意外声明全局变量。只要在变量声明前头加上 var、let 或 const 关键字即可解决。 2.使用 JavaScript 闭包很容易在不知不觉间造成内存泄漏。假如闭包的内容很大(不止是一个小字符串),那可能就是个大问题了。 3.定时器也可能会悄悄地导致内存泄漏。定时器的回调通过闭包引用了外部变量,只要定时器一直运行,回调函数中引用的 name 就会一直占用内存。

回收规则

  1. 全局变量不会被回收。
  2. 局部变量会被回收,也就是函数一旦运行完以后,函数内部的东西都会被销毁。
  3. 只要被另外一个作用域所引用就不会被回收。

题目 下列代码存在几个变量没有被回收

var i = 1;
var i = 2;
var add = function() {
    var i = 0;
    return function()
{
        i++;
        console.log(i);
    }
}();
add();

有3个变量没有被回收 全局变量中的i和add 闭包中的变量i

Cheney算法

semispace (From)空间 存活对象复制到To空间,空间角色交换 非存活对象占用空间被释放

semispace (To)空间

释放内存

Mark-Sweep

遍历所有对象,标记活对象,清除死亡对象

Mark-Compact 清除死亡对象之后会,出现不连续的内存碎片,要将活动对象往一端移动

分代式垃圾回收

新生代 新生代中的对象为存活时间较短的对象 老生代 老生代中的对象为存活时间较长或常驻内存的对象