-
Notifications
You must be signed in to change notification settings - Fork 0
/
merge_lora_params.py
76 lines (66 loc) · 2.33 KB
/
merge_lora_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
from paddlenlp.peft import LoRAConfig, LoRAModel
from paddlenlp.transformers import AutoModelForCausalLM, AutoTokenizer
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name_or_path",
default=None,
required=True,
help="The directory of pretrained model.",
)
parser.add_argument(
"--lora_path",
default=None,
required=True,
help="The directory of LoRA parameters. Default to None",
)
parser.add_argument(
"--merge_model_path",
default=None,
help="The directory of merged parameters. Default to None",
)
parser.add_argument("--device", type=str, default="gpu", help="Device")
return parser.parse_args()
def merge():
args = parse_arguments()
paddle.set_device(args.device)
lora_config = LoRAConfig.from_pretrained(args.lora_path)
dtype = lora_config.dtype
lora_config.merge_weights = True
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
dtype=dtype,
)
model = LoRAModel.from_pretrained(
model=model, lora_path=args.lora_path, lora_config=lora_config
)
model.eval()
if args.merge_model_path is None:
args.merge_model_path = args.lora_path
model_state_dict = model.model.state_dict()
for key in list(model_state_dict):
if "lora" in key:
del model_state_dict[key]
model.model.save_pretrained(args.merge_model_path, state_dict=model_state_dict)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
use_fast=False,
)
tokenizer.save_pretrained(args.merge_model_path)
if __name__ == "__main__":
merge()