-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgdc_data_processing.py
242 lines (194 loc) · 8.74 KB
/
gdc_data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import operator
import pandas as pd
from io import StringIO
from numpy import where
from functools import reduce
from gdc_rest import RequestEndpoint, http_post
def unfold_dataframe(df, identifier, meta, sep="."):
# if not (True in df[identifier].isnull()):
# data = json_normalize(df, record_path=identifier, meta=meta)
# else:
data = pd.DataFrame.from_records([x if isinstance(x, dict) else {} for x in df[identifier].tolist()])
data.index = df.index
data.columns = [str(identifier) + sep + str(name) for name in data.columns]
if not isinstance(data, pd.DataFrame):
return data
else:
return pd.concat([df, data], axis=1)
def unlist_singles(iterable, parent=None, index=None):
if isinstance(iterable, dict):
for key in iterable:
unlist_singles(iterable[key], iterable, key)
elif isinstance(iterable, list):
if len(iterable) == 1:
if parent is None:
pass
# print("iterable is already unlisted.")
else:
parent[index] = iterable[0]
unlist_singles(iterable[0], parent=parent, index=index)
elif len(iterable) > 1:
for i in range(len(iterable)):
unlist_singles(iterable[i], iterable, i)
else:
return iterable
OPERATORS = {"and": operator.and_, "or": operator.or_, "is": operator.is_, "not": operator.not_}
def dataframe_filter(dataframe, operator_function, conditions):
truthvalues = [dataframe[k] == v for k, v in iter(conditions.items())]
intersect = list(set(where(reduce(operator_function, truthvalues))[0]))
if len(intersect) > 0:
return dataframe.iloc[intersect,]
else:
raise Exception("No columns were selected. Filtering resulted in an empty DataFrame")
class LayeredDataframe():
def __init__(self, dataframe):
self.data = dataframe
self.__update_indexes()
def unfold(self, meta):
for k in self.dictids:
self.data = unfold_dataframe(self.data, k, meta).drop([k], axis=1)
self.__update_indexes()
def __update_indexes(self):
self.listids = self.data.columns[where(self.data.apply(lambda x: list in [type(i) for i in x]))]
self.dictids = self.data.columns[where(self.data.apply(lambda x: dict in [type(i) for i in x]))]
def extract(self, identifier, metacolumn):
records = self.data[identifier].tolist()
frames = [pd.DataFrame(records[i], index=[i] * len(records[i])) for i in range(len(records))]
dataframe = pd.concat([pd.concat(frames, axis=0), self.data[metacolumn]], join="outer", axis=1, sort=True)
dataframe.index = list(range(dataframe.shape[0]))
return dataframe
class GDCProjectData(object):
def __init__(self):
request = RequestEndpoint(RequestEndpoint.PROJECTS,format="tsv",size=1000,fields="*")
data = request.request(http_post, convert=False)
self.data = pd.read_csv(StringIO(data.decode("utf-8")), sep="\t")
self.data.index = self.data["project_id"]
def getProjectNames(self):
return self.data["project_id"]
def getAvailableFields(self):
return self.data.columns
def getProjectInformation(self, projectNames):
return self.data.loc[projectNames,:]
class GDCCaseMetadataHandler(object):
def __init__(self, filter=None, fields="*", expand=None, maxEntries=10000):
params = {
"format": "json",
"size": maxEntries,
"pretty": "false",
"fields": ','.join(fields) if isinstance(fields, list) else fields, }
if filter is not None:
params["filters"] = filter
if expand is not None:
params["expand"] = ','.join(expand) if isinstance(expand, list) else expand
self.req = RequestEndpoint(endpoint=RequestEndpoint.CASES, **params)
self.__frame = self.fetch()
self.__frame.unfold("case_id")
def getData(self):
return self.__frame.data
def fetch(self):
print("Retrieving case/file metadata")
data = self.req.request(http_post, convert=True)
unlist_singles(data)
print("Data retrieval is now complete")
return LayeredDataframe(pd.DataFrame(data))
def getBranch(self, identifier, metacolumn):
df = self.__frame.extract(identifier, metacolumn)
# df.index = self.__frame.data[metacolumn]
return df
class GDCFileData(object):
filterparams = None
def __init__(self, handler, metacolumn="case_id", fileidcolumn="file_id", filterparams=None):
self.handler = handler
self.metacolumn = metacolumn
self.fileidcolumn = fileidcolumn
self.dataindex = None
if filterparams is not None:
if self.filterparams is None:
self.filterparams = filterparams
else:
self.filterparams.update(filterparams)
ld = LayeredDataframe(self.handler.getBranch(identifier="files", metacolumn=self.metacolumn))
ld.unfold(fileidcolumn)
data = ld.data
if self.filterparams is not None:
data = dataframe_filter(data, OPERATORS["and"], self.filterparams)
self.__dataframe = LayeredDataframe(data)
self.__dataframe.unfold(fileidcolumn)
self.updateIndex()
self.updateMetadata()
def updateMetadata(self):
# df = pd.concat([self.getFileData(), self.handler.getData().drop(["files"], axis=1)],
# keys=[self.metacolumn],
# axis=1,
# ignore_index=False)
df = pd.merge(self.getFileData(), self.handler.getData().drop(["files"], axis=1), how="left", on=self.metacolumn)
self.__metadata = df
self.metafeatures = self.__metadata.columns
print("Metadata for the requested cases has been updated")
def getFileData(self):
return self.__dataframe.data
def filterByCaseMetadata(self, d, operator="and", update=False):
cases = dataframe_filter(self.handler.getData(), OPERATORS[operator], d)
df = self.__dataframe.data[self.__dataframe.data[self.metacolumn].apply(lambda x: x in cases[self.metacolumn])]
if update:
self.__dataframe.data = df
else:
return df
self.updateIndex()
self.updateMetadata()
def filterByFileData(self, d, operator="and", update=False):
df = dataframe_filter(self.__dataframe.data, OPERATORS[operator], d)
if update:
self.__dataframe.data = df
else:
return df
self.updateIndex()
self.updateMetadata()
def confirmLocalStorage(self, path, download=True, file_name_col="file_name"):
fd = self.getFileData()
self.handler.req.downloadFromTSVMetadata(fd, writeFolder=path)
def updateIndex(self):
fileids = self.getFileData()[self.fileidcolumn].tolist()
caseids = self.getFileData()[self.metacolumn].tolist()
idx = pd.MultiIndex.from_tuples(list(zip(*[caseids,fileids])),
names=[self.metacolumn, self.fileidcolumn])
print("Sample index has been updated")
self.dataindex = idx
def getMetadata(self):
return self.__metadata
def getOutputVector(self, column):
col = self.getMetadata()[column]
col.index = self.dataindex
return col
class GeneExpressionQuantification(GDCFileData):
filterparams = {
"access": "open",
"data_type": "Gene Expression Quantification"
}
# Function to read files with FPKM counts and convert into a dataframe
def parse_file(self, path, verbose=False):
if verbose:
print("Reading file: ", path)
return pd.read_csv(path, sep='\t', header=None, index_col=0)
def __getDataFrameFromFiles(self, filepath):
filelist = self.getFileData()["file_name"].tolist()
df = pd.concat((self.parse_file(filepath + path, False) for path in filelist), axis=1).T
return df
def getDataMatrix(self, filepath, caseMetaColumn="case_id", fileIdColumn="file_name", removeEnsemblRevisionId=True):
assert isinstance(filepath, str), "File path must be a string."
self.confirmLocalStorage(filepath)
df = self.__getDataFrameFromFiles(filepath)
df.index = self.dataindex
if removeEnsemblRevisionId:
df.columns = [f.split(".")[0] for f in df.columns]
return df
def filter_by_output_vector(X, y, outputs, outputType="class"):
if outputType == "class":
samples = y.isin(outputs)
elif outputType == "reg":
samples = y.apply(outputs)
return X[samples], y[samples]
def read_dataset_from_file(path):
return pd.read_csv(path,index_col = [0,1])
def read_output_vector_from_file(path):
return pd.read_csv(path, index_col = [0,1], squeeze = True, header=None)