-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.cpp
331 lines (320 loc) · 10 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include <array>
#include <iostream>
#include "bezier_curve.hpp"
#include "b_spline_curve.hpp"
#include "catmull_rom_spline.hpp"
#include "cubic_hermite_spline.hpp"
#include "curve_conversion.hpp"
#include "hermite_splines.hpp"
#include "polynomials.hpp"
#include "utils.hpp"
int main() {
constexpr size_t degree = 3;
std::array<Point<2>, degree+1> weights = {
Point<2>{-1.0, 0.0},
Point<2>{-0.5, 0.5},
Point<2>{ 0.5, -0.5},
Point<2>{ 1.0, 0.0},
};
BezierCurve<degree, 100, 2> b (weights);
b.print();
std::cout << '\n';
return 0;
}
// int main() {
// std::array<Point<2>, 4> points = {
// Point<2>{0,0},
// Point<2>{1,1},
// Point<2>{-1,0},
// Point<2>{1,0}
// };
//
// CubicHermiteSpline<10, 2> hs (points);
// hs.print();
// return 0;
// }
// int main() {
// constexpr int n_points = 5;
// constexpr int dimensions = 2;
// std::array<Point<dimensions>, 4> weights = {
// Point<dimensions>{110,150},//0},
// Point<dimensions>{25,190}, //1},
// Point<dimensions>{210,250}, //2},
// Point<dimensions>{210, 30} //3}
// };
// print(weights);
//
// BezierCurve<3, n_points, dimensions> b (weights);
// b.print();
// std::cout << '\n';
//
// std::array<Point<dimensions>, 4> hermite_points = convertBezierPointsToHermitePoints(weights);
// print(hermite_points);
// CubicHermiteSpline<n_points, dimensions> hs (hermite_points);
// hs.print();
// std::cout << '\n';
//
// std::array<Point<dimensions>, 4> weights_returned = convertHermitePointsToBezierPoints(hermite_points);
// print(weights_returned);
// BezierCurve<3, n_points, dimensions> b_returned (weights_returned);
// b_returned.print();
// std::cout << '\n';
//
// return 0;
// }
// int main() {
// constexpr int n_points = 10;
// constexpr int dimensions = 2;
// constexpr int N = 7;
//
// std::array<Point<dimensions>, N> p = {
// // Point<dimensions>{-4., 1.},
// Point<dimensions>{-4., 1.},
// Point<dimensions>{-4., 1.},
// Point<dimensions>{-2., -2.},
// Point<dimensions>{0, 0},
// Point<dimensions>{2, -3},
// Point<dimensions>{3, 1},
// Point<dimensions>{3, 1},
// // Point<dimensions>{3, 1},
// };
//
// const double tao = 1;
// CatmullRomSpline<N, n_points, dimensions> cms(p, tao);
// cms.print();
//
// return 0;
// }
//
// int main () {
// constexpr size_t degree = 3;
// constexpr size_t dimensions = 2;
// constexpr size_t n_points = 10;
// constexpr std::array<Point<dimensions>, degree+1> p = {
// Point<dimensions>{0., 0.},
// Point<dimensions>{4., 1.},
// Point<dimensions>{0., 1.},
// Point<dimensions>{0., 1.},
// // Point<dimensions>{0., 1.},
// // Point<dimensions>{0., 1.},
// };
//
// const auto chs = CubicHermiteSpline<n_points, dimensions>(p);
// std::cout << "Cubic Hermite Spline" << '\n';
// chs.print();
// std::cout << '\n';
//
// constexpr auto hs = HermiteSplines<degree, n_points, dimensions>(p);
// std::cout << "Hermite Spline" << '\n';
// hs.print();
// std::cout << '\n';
// return 0;
// }
//
// int main () {
// std::array<std::array<double, 4>, 1> m1 = {
// {1,2,3,4}
// };
//
// std::array<std::array<double, 2>, 4> m2 = {
// std::array<double, 2>{1,2},
// std::array<double, 2>{1,2},
// std::array<double, 2>{1,2},
// std::array<double, 2>{1,2}
// };
//
// debug_print(multiply_two_matrices(m1, m2));
// }
// int main() {
// constexpr size_t n_control_points = 4;
// constexpr size_t degree = 3;
// constexpr size_t dimensions = 2;
// constexpr size_t n_points = 100;
//
// std::array<std::array<double, dimensions>, n_control_points> control_points = {
// Point<dimensions>{-1.0, 0.0},
// Point<dimensions>{-0.5, 0.5},
// Point<dimensions>{ 0.5, -0.5},
// Point<dimensions>{ 1.0, 0.0},
// };
//
// // B-splines with clamped knot vectors pass through
// // the two end control points.
// // A clamped knot vector must have `degree + 1` equal knots
// // at both its beginning and end.
// // This is done to ensure that the bspline collapses into a bezier curve
// // and a comparison and sanity check for the code can be run
// std::array<int, n_control_points+degree+1> knots = {0,0,0,0,3,3,3,3};
// std::array<int, n_control_points> weights;
// std::fill(std::begin(weights), std::end(weights), 1);
// BSplineCurve<degree, n_control_points, n_points, dimensions> bspline(control_points, knots, weights);
// bspline.print();
//
// // assert (degree + 1) == n_control_points;
// BezierCurve<degree, n_points, dimensions> bezier (control_points);
// bezier.print();
//
// std::cout << '\n';
// return 0;
// }
// constexpr size_t n_control_points = 4;
// constexpr size_t degree = 3;
// constexpr size_t dimensions = 2;
// constexpr size_t n_points = 10;
//
// // To check if compile time evaluation is performed
// constexpr BSplineCurve<degree, n_control_points, n_points, dimensions> f() {
// if (std::is_constant_evaluated()) {
// constexpr std::array<std::array<double, dimensions>, n_control_points> control_points = {
// Point<dimensions>{-1.0, 0.0},
// Point<dimensions>{-0.5, 0.5},
// Point<dimensions>{ 0.5, -0.5},
// Point<dimensions>{ 1.0, 0.0},
// };
//
// constexpr std::array<int, n_control_points+degree+1> knots = {0,0,0,0,3,3,3,3};
// constexpr std::array<int, n_control_points> weights = {1,1,1,1};
// constexpr BSplineCurve<degree, n_control_points, n_points, dimensions> bspline(control_points, knots, weights);
// return bspline;
// } else {
// std::array<std::array<double, dimensions>, n_control_points> control_points = {
// Point<dimensions>{-2.0, 0.0},
// Point<dimensions>{-1.0, 1.0},
// Point<dimensions>{ 1.0, -1.0},
// Point<dimensions>{ 2.0, 0.0},
// };
// std::array<int, n_control_points+degree+1> knots = {0,0,0,0,3,3,3,3};
// std::array<int, n_control_points> weights = {1,1,1,1};
// BSplineCurve<degree, n_control_points, n_points, dimensions> bspline(control_points, knots, weights);
// return bspline;
// }
//
// }
//
// int main() {
// constexpr auto bspline_constexpr = f();
// bspline_constexpr.print();
// std::cout << '\n';
// auto bspline = f();
// bspline.print();
// return 0;
// }
// constexpr size_t degree = 3;
// constexpr size_t dimensions = 2;
// constexpr size_t n_points = 10;
//
// // To check if compile time evaluation is performed
// constexpr BezierCurve<degree, n_points, dimensions> f() {
// if (std::is_constant_evaluated()) {
// constexpr std::array<std::array<double, dimensions>, degree+1> weights = {
// Point<dimensions>{-1.0, 0.0},
// Point<dimensions>{-0.5, 0.5},
// Point<dimensions>{ 0.5, -0.5},
// Point<dimensions>{ 1.0, 0.0},
// };
//
// constexpr BezierCurve<degree, n_points, dimensions> bezier(weights);
// return bezier;
// } else {
// std::array<std::array<double, dimensions>, degree+1> weights = {
// Point<dimensions>{-2.0, 0.0},
// Point<dimensions>{-1.0, 1.0},
// Point<dimensions>{ 1.0, -1.0},
// Point<dimensions>{ 2.0, 0.0},
// };
// BezierCurve<degree, n_points, dimensions> bezier(weights);
// return bezier;
// }
//
// }
//
// int main() {
// constexpr auto bezier_constexpr = f();
// bezier_constexpr.print();
// std::cout << '\n';
// auto bezier = f();
// bezier.print();
// return 0;
// }
// constexpr size_t degree = 3;
// constexpr size_t dimensions = 2;
// constexpr size_t n_points = 10;
//
// // To check if compile time evaluation is performed
// constexpr HermiteSplines<degree, n_points, dimensions> f() {
// if (std::is_constant_evaluated()) {
// constexpr std::array<Point<dimensions>, degree+1> p = {
// Point<dimensions>{0., 0.},
// Point<dimensions>{4., 1.},
// Point<dimensions>{0., 1.},
// Point<dimensions>{0., 1.},
// };
//
// constexpr auto hs = HermiteSplines<degree, n_points, dimensions>(p);
// return hs;
// } else {
// constexpr std::array<Point<dimensions>, degree+1> p = {
// Point<dimensions>{0., 0.},
// Point<dimensions>{1., 1.},
// Point<dimensions>{0., 1.},
// Point<dimensions>{0., 1.},
// };
//
// constexpr auto hs = HermiteSplines<degree, n_points, dimensions>(p);
// return hs;
// }
//
// }
//
// int main() {
// constexpr auto hs_constexpr = f();
// hs_constexpr.print();
// std::cout << '\n';
// const auto hs = f();
// hs.print();
// return 0;
// }
// constexpr int n_points = 10;
// constexpr int dimensions = 2;
// constexpr int N = 7;
// // To check if compile time evaluation is performed
// constexpr CatmullRomSpline<N, n_points, dimensions> f() {
// if (std::is_constant_evaluated()) {
// constexpr std::array<Point<dimensions>, N> p = {
// Point<dimensions>{-4., 1.},
// Point<dimensions>{-4., 1.},
// Point<dimensions>{-2., -2.},
// Point<dimensions>{0, 0},
// Point<dimensions>{2, -3},
// Point<dimensions>{3, 1},
// Point<dimensions>{3, 1},
// };
//
// constexpr double tao = 1;
// constexpr auto cms = CatmullRomSpline<N, n_points, dimensions>(p, tao);
// return cms;
// } else {
// std::array<Point<dimensions>, N> p = {
// Point<dimensions>{-5., 1.},
// Point<dimensions>{-5., 1.},
// Point<dimensions>{-2., -2.},
// Point<dimensions>{0, 0},
// Point<dimensions>{2, -3},
// Point<dimensions>{4, 1},
// Point<dimensions>{4, 1},
// };
//
// const double tao = 1;
// auto cms = CatmullRomSpline<N, n_points, dimensions>(p, tao);
// return cms;
// }
// }
//
// int main() {
// constexpr auto cms_constexpr = f();
// cms_constexpr.print();
// std::cout << '\n';
// auto cms = f();
// cms.print();
// return 0;
// }