-
-
Notifications
You must be signed in to change notification settings - Fork 8.8k
Description
Your current environment
2025-04-18 06:03:09 (182 KB/s) - ‘collect_env.py’ saved [26874/26874]
INFO 04-18 06:03:19 [init.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.7.0a0+7c8ec84dab.nv25.03
Is debug build: False
CUDA used to build PyTorch: 12.8
ROCM used to build PyTorch: N/A
OS: Ubuntu 24.04.1 LTS (aarch64)
GCC version: (Ubuntu 10.5.0-4ubuntu2) 10.5.0
Clang version: Could not collect
CMake version: version 3.31.6
Libc version: glibc-2.39
Python version: 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.15.0-133-generic-aarch64-with-glibc2.39
Is CUDA available: True
CUDA runtime version: 12.8.93
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L20
GPU 1: NVIDIA L20
GPU 2: NVIDIA L20
GPU 3: NVIDIA L20
GPU 4: NVIDIA L20
GPU 5: NVIDIA L20
GPU 6: NVIDIA L20
GPU 7: NVIDIA L20
Nvidia driver version: 560.35.05
cuDNN version: Probably one of the following:
/usr/lib/aarch64-linux-gnu/libcudnn.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_adv.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_cnn.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_engines_precompiled.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_graph.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_heuristic.so.9.8.0
/usr/lib/aarch64-linux-gnu/libcudnn_ops.so.9.8.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
ersions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cudnn-frontend==1.10.0
[pip3] nvidia-dali-cuda120==1.47.0
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-modelopt==0.25.0
[pip3] nvidia-modelopt-core==0.25.0
[pip3] nvidia-nvimgcodec-cu12==0.4.1.21
[pip3] nvidia-nvjpeg2k-cu12==0.8.1.40
[pip3] nvidia-nvtiff-cu12==0.4.0.62
[pip3] onnx==1.17.0
[pip3] optree==0.14.1
[pip3] pynvml==12.0.0
[pip3] pytorch-triton==3.2.0+gitb2684bf3b.nvinternal
[pip3] pyzmq==26.2.1
[pip3] torch==2.7.0a0+7c8ec84dab.nv25.3
[pip3] torch-geometric==2.6.1
[pip3] torch_tensorrt==2.7.0a0
[pip3] torchprofile==0.0.4
[pip3] torchvision==0.22.0a0
[pip3] transformers==4.51.2
[pip3] triton==3.3.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.3rc2.dev92+g98d01d3ce.d20250410
vLLM Build Flags:
CUDA Archs: 8.0 8.6 9.0 10.0 12.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX PIX PIX SYS SYS SYS SYS PIX PIX PIX SYS 16-31 1 N/A
GPU1 PIX X PIX PIX SYS SYS SYS SYS PIX PIX PIX SYS 16-31 1 N/A
GPU2 PIX PIX X PIX SYS SYS SYS SYS PIX PIX PIX SYS 16-31 1 N/A
GPU3 PIX PIX PIX X SYS SYS SYS SYS PIX PIX PIX SYS 16-31 1 N/A
GPU4 SYS SYS SYS SYS X PIX PIX PIX SYS SYS SYS PIX 64-79 4 N/A
GPU5 SYS SYS SYS SYS PIX X PIX PIX SYS SYS SYS PIX 64-79 4 N/A
GPU6 SYS SYS SYS SYS PIX PIX X PIX SYS SYS SYS PIX 64-79 4 N/A
GPU7 SYS SYS SYS SYS PIX PIX PIX X SYS SYS SYS PIX 64-79 4 N/A
NIC0 PIX PIX PIX PIX SYS SYS SYS SYS X PIX PIX SYS
NIC1 PIX PIX PIX PIX SYS SYS SYS SYS PIX X PIX SYS
NIC2 PIX PIX PIX PIX SYS SYS SYS SYS PIX PIX X SYS
NIC3 SYS SYS SYS SYS PIX PIX PIX PIX SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NVIDIA_VISIBLE_DEVICES=all
CUBLAS_VERSION=12.8.4.1
NVIDIA_REQUIRE_CUDA=cuda>=9.0
CUDA_CACHE_DISABLE=1
TORCH_CUDA_ARCH_LIST=8.0 8.6 9.0 10.0 12.0+PTX
NCCL_VERSION=2.25.1
NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
TORCH_NCCL_USE_COMM_NONBLOCKING=0
NVIDIA_PRODUCT_NAME=PyTorch
CUDA_VERSION=12.8.1.012
PYTORCH_VERSION=2.7.0a0+7c8ec84
PYTORCH_BUILD_NUMBER=0
CUBLASMP_VERSION=0.4.0.789
CUDNN_FRONTEND_VERSION=1.10.0
CUDNN_VERSION=9.8.0.87
PYTORCH_HOME=/opt/pytorch/pytorch
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_BUILD_ID=148941829
CUDA_DRIVER_VERSION=570.124.06
PYTORCH_BUILD_VERSION=2.7.0a0+7c8ec84
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
CUDA_MODULE_LOADING=LAZY
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
NVIDIA_PYTORCH_VERSION=25.03
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
How you are installing vllm
If I build vllm 0.8.3 from source code in arm64 platform, how can I add vllm[audio] function from building, look forward to your feedback.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.