-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdissolFoam.C
183 lines (147 loc) · 5.61 KB
/
dissolFoam.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-201X OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
dissolFoam
Description
Solves for steady flow (Stokes or inertial) and reactant transport
normalMotionSlip boundary condition nmoves the mesh according to the
reactant flux
Works with official and extended versions of OpenFOAM
Currently: v1706 and v1712 May 26 2018
\*---------------------------------------------------------------------------*/
// common and simpleFoam
#include "fvCFD.H"
// OF
#include "pointPatchField.H"
#include "dynamicFvMesh.H"
#include "syncTools.H"
#include "vectorIOList.H"
// dissolFoam project
#include "steadyStateControl.H"
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createDynamicFvMesh.H"
#include "readDicts.H"
#include "createFields.H"
const label patchID = mesh.boundaryMesh().findPatchID("outlet");
// * * * * * MAIN LOOP * * * * * * * * * * * * * * * * * * * * * //
runTime.functionObjects().execute(); // Execute cntlDict functions
bool firstCycle = true; // Identify first cycle
while (runTime.run())
{
if (! firstCycle) // Skip runTime++ on first cycle
{
runTime++;
Info << "Begin cycle: Time = " << runTime.timeName()
<< " dt = " << runTime.deltaTValue()
<< nl << endl;
/*###############################################
* Mesh motion & relaxation
* Control parameters in dynamicMeshDict
*###############################################*/
mesh.update();
Info << "Mesh update: ExecutionTime = "
<< runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl<< endl;
}
/*###############################################
* Steady-state flow solver
* Control parameters in fvSolution
*###############################################*/
steadyStateControl simple(mesh);
while ( simple.loop() )
{
if(inertia)
{
#include "UEqn.H" // Navier Stokes
#include "pEqn.H"
}
else
{
#include "UEqnStokes.H" // Stokes
#include "pEqn.H"
}
// rescaling the flow velocities
if(limitFlux)
{
scalar Q = mag( gSum(phi.boundaryField()[patchID]) );
scalar compareTo = (constFlux) ? SMALL : Qlim;
scalar scaleFactor = ( Q > compareTo ) ? Qlim / Q : 1.0;
p == scaleFactor * p;
U == scaleFactor * U;
}
}
Info << "Final flow rate: "
<< mag( gSum(phi.boundaryField()[patchID]) ) << endl;
Info << "Flow solver: "
<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s "
<< "ClockTime = "<< runTime.elapsedClockTime() << " s"
<< nl << endl;
/*##########################################
* Steady-state convection-diffusion solver
* Control parameters in fvSolution
*##########################################*/
Info << "Steady-state concentration solver"<< endl;
int iter = 0;
while ( iter < maxIter )
{
fvScalarMatrix CEqn
(
fvm::div(phi, C) - fvm::laplacian(D, C)
);
CEqn.relax();
double residual = solve( CEqn ).initialResidual();
iter++;
Info << " Step " << token::TAB << iter << token::TAB
<< " residual: "<< residual << " > " << tolerance << endl;
if( residual < tolerance )
{
Info << "Convection-diffusion: "
<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s "
<< "ClockTime = " << runTime.elapsedClockTime() << " s "
<< nl << "Converged in " << iter << " steps. Residual = "
<< residual << nl << endl;
break; // Done
}
else if(iter >= maxIter)
{
Warning << "dissolFoam Runtime WARNING:"
<< "Convection-diffusion solver did not converge." << nl
<< "Maximum number of iterations"
<< " iter: "<< iter << exit(FatalError); // No convergence
}
}
// *********************************************************
// * Write Output data
// *********************************************************
if(writeFluxC)
fluxC == phi/mag(mesh.Sf())*fvc::interpolate(C)
- D*fvc::snGrad(C);
Info << "Write fields: Time = " << runTime.timeName() << nl << endl;
firstCycle ? runTime.writeNow() : runTime.write();
firstCycle = false;
}
Info << "End" << endl;
return 0;
}
// ********************* End of the solver ************************** //