-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
158 lines (119 loc) · 5.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
from PIL import Image
class BaseNetwork(nn.Module):
def __init__(self):
super(BaseNetwork, self).__init__()
def init_weights(self):
self.apply(self._weights_init_fn)
def _weights_init_fn(self, m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0)
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class ResidualBlock(BaseNetwork):
"""Residual Block with instance normalization."""
def __init__(self, dim_in, dim_out):
super(ResidualBlock, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(dim_in, dim_out, kernel_size=3,
stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.Conv2d(dim_out, dim_out, kernel_size=3,
stride=1, padding=1, bias=False),
nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True))
self.init_weights()
def forward(self, x):
return x + self.main(x)
class Generator(BaseNetwork):
"""Generator network."""
def __init__(self, conv_dim=64, c_dim=5, repeat_num=6):
super(Generator, self).__init__()
layers = []
layers.append(nn.Conv2d(3+c_dim, conv_dim, kernel_size=7,
stride=1, padding=3, bias=False))
layers.append(nn.InstanceNorm2d(
conv_dim, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
self.debug1 = nn.Sequential(*layers)
# Down-sampling layers.
curr_dim = conv_dim
for i in range(2):
layers.append(nn.Conv2d(curr_dim, curr_dim*2,
kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(
curr_dim*2, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
curr_dim = curr_dim * 2
self.debug2 = nn.Sequential(*layers)
# Bottleneck layers.
for i in range(repeat_num):
layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim))
self.debug3 = nn.Sequential(*layers)
# Up-sampling layers.
for i in range(2):
layers.append(nn.ConvTranspose2d(curr_dim, curr_dim //
2, kernel_size=4, stride=2, padding=1, bias=False))
layers.append(nn.InstanceNorm2d(
curr_dim//2, affine=True, track_running_stats=True))
layers.append(nn.ReLU(inplace=True))
curr_dim = curr_dim // 2
self.main = nn.Sequential(*layers)
self.debug4 = nn.Sequential(*layers)
# Same architecture for the color regression
layers = []
layers.append(nn.Conv2d(curr_dim, 3, kernel_size=7,
stride=1, padding=3, bias=False))
layers.append(nn.Tanh())
self.im_reg = nn.Sequential(*layers)
# One Channel output and Sigmoid function for the attention layer
layers = []
layers.append(nn.Conv2d(curr_dim, 1, kernel_size=7,
stride=1, padding=3, bias=False))
layers.append(nn.Sigmoid()) # Values between 0 and 1
self.im_att = nn.Sequential(*layers)
self.init_weights()
def forward(self, x, c):
# Replicate spatially and concatenate domain information.
c = c.unsqueeze(2).unsqueeze(3)
c = c.expand(c.size(0), c.size(1), x.size(2), x.size(3))
x = torch.cat([x, c], dim=1)
features = self.main(x)
reg = self.im_reg(features)
att = self.im_att(features)
return att, reg
class Discriminator(BaseNetwork):
"""Discriminator network with PatchGAN."""
def __init__(self, image_size=128, conv_dim=64, c_dim=5, repeat_num=6):
super(Discriminator, self).__init__()
layers = []
layers.append(
nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = conv_dim
for i in range(1, repeat_num):
layers.append(nn.Conv2d(curr_dim, curr_dim*2,
kernel_size=4, stride=2, padding=1))
layers.append(nn.LeakyReLU(0.01))
curr_dim = curr_dim * 2
kernel_size = int(image_size / np.power(2, repeat_num))
self.main = nn.Sequential(*layers)
self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=3,
stride=1, padding=1, bias=False)
self.conv2 = nn.Conv2d(
curr_dim, c_dim, kernel_size=kernel_size, bias=False)
self.init_weights()
def forward(self, x):
h = self.main(x)
out_src = self.conv1(h)
out_cls = self.conv2(h)
# out_cls.view(out_cls.size(0), out_cls.size(1))
return out_src.squeeze(), out_cls.squeeze()