-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconfig.py
98 lines (87 loc) · 5.06 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import argparse
def get_config():
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--c_dim', type=int, default=17,
help='dimension of domain labels')
parser.add_argument('--image_size', type=int,
default=128, help='image resolution')
parser.add_argument('--g_conv_dim', type=int, default=64,
help='number of conv filters in the first layer of G')
parser.add_argument('--d_conv_dim', type=int, default=64,
help='number of conv filters in the first layer of D')
parser.add_argument('--g_repeat_num', type=int, default=6,
help='number of residual blocks in G')
parser.add_argument('--d_repeat_num', type=int, default=6,
help='number of strided conv layers in D')
parser.add_argument('--lambda_cls', type=float, default=160,
help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10,
help='weight for reconstruction loss')
parser.add_argument('--lambda_gp', type=float, default=10,
help='weight for gradient penalty')
parser.add_argument('--lambda_sat', type=float, default=0.1,
help='weight for attention saturation loss')
parser.add_argument('--lambda_smooth', type=float, default=1e-4,
help='weight for the attention smoothing loss')
# Training configuration.
parser.add_argument('--batch_size', type=int,
default=16, help='mini-batch size')
parser.add_argument('--num_epochs', type=int, default=30,
help='number of total epochs for training D')
parser.add_argument('--num_epochs_decay', type=int, default=20,
help='number of epochs for start decaying lr')
parser.add_argument('--g_lr', type=float, default=0.0001,
help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001,
help='learning rate for D')
parser.add_argument('--n_critic', type=int, default=5,
help='number of D updates per each G update')
parser.add_argument('--beta2', type=float, default=0.999,
help='beta2 for Adam optimizer')
parser.add_argument('--beta1', type=float, default=0.5,
help='beta1 for Adam optimizer')
parser.add_argument('--resume_iters', type=int,
default=None, help='resume training from this step')
parser.add_argument('--first_epoch', type=int,
default=0, help='First epoch')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU id')
parser.add_argument('--use_virtual', type=str2bool, default=False,
help='Boolean to decide if we should use the virtual cycle concistency loss')
# Miscellaneous.
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--mode', type=str, default='train',
choices=['train', 'animation'])
parser.add_argument('--use_tensorboard', type=str2bool, default=True)
parser.add_argument('--num_sample_targets', type=int, default=4,
help="number of targets to use in the samples visualization")
# Directories.
parser.add_argument('--image_dir', type=str,
default='data/celeba/images_aligned')
parser.add_argument('--attr_path', type=str,
default='data/celeba/list_attr_celeba.txt')
parser.add_argument('--outputs_dir', type=str, default='experiment1')
parser.add_argument('--log_dir', type=str, default='logs')
parser.add_argument('--model_save_dir', type=str, default='models')
parser.add_argument('--sample_dir', type=str, default='samples')
parser.add_argument('--result_dir', type=str, default='results')
parser.add_argument('--animation_images_dir', type=str,
default='animations/eric_andre/images_to_animate')
parser.add_argument('--animation_attribute_images_dir', type=str,
default='animations/eric_andre/attribute_images')
parser.add_argument('--animation_attributes_path', type=str,
default='animations/eric_andre/attributes.txt')
parser.add_argument('--animation_models_dir', type=str,
default='animations/eric_andre/pretrained_models')
parser.add_argument('--animation_results_dir', type=str,
default='animations/eric_andre/results')
parser.add_argument('--animation_mode', type=str, default='animate_image',
choices=['animate_image', 'animate_random_batch'])
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=200)
parser.add_argument('--model_save_step', type=int, default=1000)
config = parser.parse_args()
return config
def str2bool(v):
return v.lower() in ('true')