-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfabric_example.py
296 lines (251 loc) · 9.79 KB
/
fabric_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""
This example illustrates how SwiftLoader can be used with Fabric from lightning
"""
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Here are 4 easy steps to use Fabric in your PyTorch code.
1. Create the Lightning Fabric object at the beginning of your script.
2. Remove all ``.to`` and ``.cuda`` calls since Fabric will take care of it.
3. Apply ``setup`` over each model and optimizers pair, ``setup_dataloaders`` on all your dataloaders,
and replace ``loss.backward()`` with ``self.backward(loss)``.
4. Run the script from the terminal using ``lightning run model path/to/train.py``
Accelerate your training loop by setting the ``--accelerator``, ``--strategy``, ``--devices`` options directly from
the command line. See ``lightning run model --help`` or learn more from the documentation:
https://lightning.ai/docs/fabric.
"""
import argparse
import os
from os import path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from lightning.fabric import Fabric, seed_everything
from torch.optim.lr_scheduler import StepLR
from torchmetrics.classification import Accuracy
from torchvision.datasets import MNIST
from swift_loader import SwiftLoader
DATASETS_PATH = path.join(path.dirname(__file__), "datasets")
os.makedirs(DATASETS_PATH, exist_ok=True)
class Net(nn.Module):
def __init__(self) -> None:
super().__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def run(hparams):
# Create the Lightning Fabric object. The parameters like accelerator, strategy, devices etc. will be proided
# by the command line. See all options: `lightning run model --help`
fabric = Fabric()
seed_everything(hparams.seed) # instead of torch.manual_seed(...)
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
# we still keep the below code to ensure that data is downlaoded before any other processes try to access it
# Let rank 0 download the data first, then everyone will load MNIST
with fabric.rank_zero_first(
local=False
): # set `local=True` if your filesystem is not shared between machines
train_dataset = MNIST(
DATASETS_PATH,
download=fabric.is_global_zero,
train=True,
transform=transform,
)
test_dataset = MNIST(
DATASETS_PATH,
download=fabric.is_global_zero,
train=False,
transform=transform,
)
# train_loader = torch.utils.data.DataLoader(
# train_dataset,
# batch_size=hparams.batch_size,
# )
# test_loader = torch.utils.data.DataLoader(
# test_dataset, batch_size=hparams.batch_size
# )
# # don't forget to call `setup_dataloaders` to prepare for dataloaders for distributed training.
# train_loader, test_loader = fabric.setup_dataloaders(train_loader, test_loader)
"""
Instead of using torch loader with fabric, we can use the SwiftLoader here
When using SwiftLoader, we need to know how many GPUs in total (nb_consumer)
One easy way is to pass this number to the script via an argument
However, we can also determine it automatically like the following
"""
if "SWIFT_LOADER_CONSUMER" not in os.environ:
nb_consumer = max(1, torch.cuda.device_count())
os.environ["SWIFT_LOADER_CONSUMER"] = nb_consumer
else:
nb_consumer = int(os.environ["SWIFT_LOADER_CONSUMER"])
# now create SwiftLoader
train_loader = SwiftLoader(
dataset_class=MNIST,
dataset_kwargs={"root": DATASETS_PATH, "train": True, "transform": transform},
batch_size=hparams.batch_size,
nb_consumer=nb_consumer,
worker_per_consumer=hparams.worker_per_consumer,
shuffle=True,
)
test_loader = SwiftLoader(
dataset_class=MNIST,
dataset_kwargs={"root": DATASETS_PATH, "train": False, "transform": transform},
batch_size=hparams.batch_size,
nb_consumer=nb_consumer,
worker_per_consumer=hparams.worker_per_consumer,
shuffle=True, # if shuffle doesnt affect the result, shuffle=True is desirable
)
model = Net() # remove call to .to(device)
optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
# don't forget to call `setup` to prepare for model / optimizer for distributed training.
# the model is moved automatically to the right device.
model, optimizer = fabric.setup(model, optimizer)
scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
# use torchmetrics instead of manually computing the accuracy
test_acc = Accuracy(task="multiclass", num_classes=10).to(fabric.device)
"""
Before consuming the worker,
we should call SwiftLoader.start(worker_index: int, device: torch.device, to_device: callable=None)
"""
train_loader.start(
consumer_index=fabric.global_rank,
device=fabric.device,
)
test_loader.start(
consumer_index=fabric.global_rank,
device=fabric.device,
)
# EPOCH LOOP
for epoch in range(1, hparams.epochs + 1):
# TRAINING LOOP
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
# NOTE: no need to call `.to(device)` on the data, target
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
fabric.backward(loss) # instead of loss.backward()
optimizer.step()
if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
if hparams.dry_run:
break
scheduler.step()
# TESTING LOOP
model.eval()
test_loss = 0
with torch.no_grad():
for data, target in test_loader:
# NOTE: no need to call `.to(device)` on the data, target
output = model(data)
test_loss += F.nll_loss(output, target, reduction="sum").item()
# WITHOUT TorchMetrics
# pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
# correct += pred.eq(target.view_as(pred)).sum().item()
# WITH TorchMetrics
test_acc(output, target)
if hparams.dry_run:
break
# all_gather is used to aggregated the value across processes
test_loss = fabric.all_gather(test_loss).sum() / len(test_loader.dataset)
print(
f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({100 * test_acc.compute():.0f}%)\n"
)
test_acc.reset()
if hparams.dry_run:
break
# When using distributed training, use `fabric.save`
# to ensure the current process is allowed to save a checkpoint
if hparams.save_model:
fabric.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == "__main__":
# Arguments can be passed in through the CLI as normal and will be parsed here
# Example:
# lightning run model image_classifier.py accelerator=cuda --epochs=3
parser = argparse.ArgumentParser(description="Fabric MNIST Example")
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--epochs",
type=int,
default=14,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr",
type=float,
default=1.0,
metavar="LR",
help="learning rate (default: 1.0)",
)
parser.add_argument(
"--gamma",
type=float,
default=0.7,
metavar="M",
help="Learning rate step gamma (default: 0.7)",
)
parser.add_argument(
"--dry-run",
action="store_true",
default=False,
help="quickly check a single pass",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--save-model",
action="store_true",
default=False,
help="For Saving the current Model",
)
hparams = parser.parse_args()
run(hparams)