Skip to content

Typos in sub-plume scale terms #29

Open
@BrodiePearson

Description

@BrodiePearson

I think there are a couple of issues in the sub-plume terms in the $\overline{w'w'}$, $\overline{w'T'}$ and $\overline{w'S'}$ budgets, but I first wanted to double check that these are typos rather than me simply missing some other element of the MPAS scheme that makes these formulations correct. Changing these terms doesn't have a significant impact in the convective cases, but it might be important when the sub-plume terms play a more active role (wind-driven mixing?).

The Lappen and Randall papers present the sub-plume terms for the $\overline{w'w'}$ budget (Eqs. 40 and 48 of their first paper) and the $\overline{w'T'}$ budget (Eq. 49 of their first paper and Eq. 27 of their second paper). Noting that our ocean ADC scheme uses $\sigma$ to represent downwelling plume area rather than the upwelling plume area used in LR papers, these equations in the ocean ADC scheme are:

$$\left(\frac{\partial \overline{w'w'}}{\partial t}\right)^{sps} = -2M_c\left[ \frac{1}{1-\sigma}\frac{\partial}{\partial z} \left([1-\sigma] \overline{w'w'}^{sps,up}\right) - \frac{1}{\sigma}\frac{\partial}{\partial z} \left(\sigma \overline{w'w'}^{sps,down}\right) \right] $$

$$\left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps} = \left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps, w} + \left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps, T}$$

where

$$\left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps, w} = -\sigma(1-\sigma)(T_u-T_d)\left[ \frac{1}{1-\sigma}\frac{\partial}{\partial z} \left([1-\sigma] \overline{w'w'}^{sps,up}\right) - \frac{1}{\sigma}\frac{\partial}{\partial z} \left(\sigma \overline{w'w'}^{sps,down}\right) \right] $$

$$\left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps, T} = \frac{M_c}{1-\sigma}\frac{\partial}{\partial z} \left(K_h[1-\sigma] \frac{\partial \overline{T}}{\partial z}\right)^{up} - \frac{M_c}{\sigma}\frac{\partial}{\partial z} \left(K_h\sigma \overline{T}{\partial z}\right)^{down} $$

Typos in the ADC scheme?

The ADC scheme looks like it is applying sub-plume terms that are different from the above formulations. The $\overline{w'w'}$ term seems to have the wrong sign, while the $\overline{w'T'}$ and $\overline{w's'}$ terms look like the LR formulation where $\sigma$ is the upwelling rather than downwelling plume area. The ocean ADC formulations are (with differences highlighted in red and the associated ADC code):

$$\left(\frac{\partial \overline{w'w'}}{\partial t}\right)^{sps} = \color{red}+2M_c\left[ \frac{1}{1-\sigma}\frac{\partial}{\partial z} \left([1-\sigma] \overline{w'w'}^{sps,up}\right) - \frac{1}{\sigma}\frac{\partial}{\partial z} \left(\sigma \overline{w'w'}^{sps,down}\right) \right] $$

w2tend5(k,iCell) = Mc(k,iCell)*(Swumd(k-1,iCell) + Swumd(k,iCell))

Swumd(k,iCell) = - 2.0_RKIND/3.0_RKIND*(1.0_RKIND/sigav*(areaFraction(k,iCell)*KspsD(i1,k,iCell) - &
areaFraction(k+1,iCell)*KspsD(i1,k+1,iCell)) / dz - 1.0_RKIND / (1.0_RKIND - &
sigav)*((1.0_RKIND - areaFraction(k,iCell))*KspsU(i1,k,iCell) - (1.0_RKIND - &
areaFraction(k+1,iCell))*KspsU(i1,k+1,iCell)) / dz)

$$\left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps, w} = \color{red}+\sigma(1-\sigma)(T_u-T_d)\left[ \frac{1}{1-\sigma}\frac{\partial}{\partial z} \left([1-\sigma] \overline{w'w'}^{sps,up}\right) - \frac{1}{\sigma}\frac{\partial}{\partial z} \left(\sigma \overline{w'w'}^{sps,down}\right) \right] $$

$$\left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps,T} = \frac{M_c}{\color{red}{\sigma}}\frac{\partial}{\partial z} \left(K_h\color{red}{\sigma} \frac{\partial \overline{T}}{\partial z}\right)^{up} - \frac{M_c}{\color{red}{1-\sigma}}\frac{\partial}{\partial z} \left(K_h\color{red}{(1-\sigma)} \frac{\partial \overline{T}}{\partial z}\right)^{down} $$

wttend6(k,iCell) = areaFraction(k,iCell)*(1.0_RKIND - areaFraction(k,iCell))* &
tumd(k,iCell)*0.5_RKIND*(Swumd(k-1,iCell) + Swumd(k,iCell)) - Mc(k,iCell)* &
(1.0_RKIND / areaFraction(k,iCell) * (areaFraction(k-1,iCell)*wt_spsU(k-1,iCell) - &
areaFraction(k+1,iCell)*wt_spsU(k+1,iCell)) / (ze(k-1,iCell) - ze(k+1,iCell)) &
-1.0_RKIND/(1.0_RKIND - areaFraction(k,iCell))*((1.0_RKIND - areaFraction(k-1,iCell))* &
wt_spsD(k-1,iCell) - (1.0_RKIND - areaFraction(k+1,iCell))*wt_spsD(k+1,iCell)) / &
(ze(k-1,iCell) - ze(k+1,iCell)))

wt_spsU(k,iCell) = -KhU(k,iCell)*Tz

wt_spsD(k,iCell) = -KhD(k,iCell)*Tz

Fixes

If the above is correct, the easiest fix would be to

  1. Change the sign of Swumd and
  2. Flip $\sigma$ and $(1-\sigma)$ usage in the $\left(\frac{\partial \overline{w'T'}}{\partial t}\right)^{sps,T}$ code of wttend6 and wstend6

Metadata

Metadata

Assignees

Labels

No labels
No labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions