|
| 1 | +import uuid |
| 2 | +from typing import List |
| 3 | + |
| 4 | +import pandas as pd |
| 5 | +from pymilvus import DataType, MilvusClient, model |
| 6 | + |
| 7 | +from ..base import VannaBase |
| 8 | + |
| 9 | +# Setting the URI as a local file, e.g.`./milvus.db`, |
| 10 | +# is the most convenient method, as it automatically utilizes Milvus Lite |
| 11 | +# to store all data in this file. |
| 12 | +# |
| 13 | +# If you have large scale of data such as more than a million docs, we |
| 14 | +# recommend setting up a more performant Milvus server on docker or kubernetes. |
| 15 | +# When using this setup, please use the server URI, |
| 16 | +# e.g.`http://localhost:19530`, as your URI. |
| 17 | + |
| 18 | +DEFAULT_MILVUS_URI = "./milvus.db" |
| 19 | +# DEFAULT_MILVUS_URI = "http://localhost:19530" |
| 20 | + |
| 21 | +MAX_LIMIT_SIZE = 10_000 |
| 22 | + |
| 23 | + |
| 24 | +class Milvus_VectorStore(VannaBase): |
| 25 | + """ |
| 26 | + Vectorstore implementation using Milvus - https://milvus.io/docs/quickstart.md |
| 27 | +
|
| 28 | + Args: |
| 29 | + - config (dict, optional): Dictionary of `Milvus_VectorStore config` options. Defaults to `None`. |
| 30 | + - milvus_client: A `pymilvus.MilvusClient` instance. |
| 31 | + - embedding_function: |
| 32 | + A `milvus_model.base.BaseEmbeddingFunction` instance. Defaults to `DefaultEmbeddingFunction()`. |
| 33 | + For more models, please refer to: |
| 34 | + https://milvus.io/docs/embeddings.md |
| 35 | + """ |
| 36 | + def __init__(self, config=None): |
| 37 | + VannaBase.__init__(self, config=config) |
| 38 | + |
| 39 | + if "milvus_client" in config: |
| 40 | + self.milvus_client = config["milvus_client"] |
| 41 | + else: |
| 42 | + self.milvus_client = MilvusClient(uri=DEFAULT_MILVUS_URI) |
| 43 | + |
| 44 | + if "embedding_function" in config: |
| 45 | + self.embedding_function = config.get("embedding_function") |
| 46 | + else: |
| 47 | + self.embedding_function = model.DefaultEmbeddingFunction() |
| 48 | + self._embedding_dim = self.embedding_function.encode_documents(["foo"])[0].shape[0] |
| 49 | + self._create_collections() |
| 50 | + self.n_results = config.get("n_results", 10) |
| 51 | + |
| 52 | + def _create_collections(self): |
| 53 | + self._create_sql_collection("vannasql") |
| 54 | + self._create_ddl_collection("vannaddl") |
| 55 | + self._create_doc_collection("vannadoc") |
| 56 | + |
| 57 | + |
| 58 | + def generate_embedding(self, data: str, **kwargs) -> List[float]: |
| 59 | + return self.embedding_function.encode_documents(data).tolist() |
| 60 | + |
| 61 | + |
| 62 | + def _create_sql_collection(self, name: str): |
| 63 | + if not self.milvus_client.has_collection(collection_name=name): |
| 64 | + vannasql_schema = MilvusClient.create_schema( |
| 65 | + auto_id=False, |
| 66 | + enable_dynamic_field=False, |
| 67 | + ) |
| 68 | + vannasql_schema.add_field(field_name="id", datatype=DataType.VARCHAR, max_length=65535, is_primary=True) |
| 69 | + vannasql_schema.add_field(field_name="text", datatype=DataType.VARCHAR, max_length=65535) |
| 70 | + vannasql_schema.add_field(field_name="sql", datatype=DataType.VARCHAR, max_length=65535) |
| 71 | + vannasql_schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self._embedding_dim) |
| 72 | + |
| 73 | + vannasql_index_params = self.milvus_client.prepare_index_params() |
| 74 | + vannasql_index_params.add_index( |
| 75 | + field_name="vector", |
| 76 | + index_name="vector", |
| 77 | + index_type="AUTOINDEX", |
| 78 | + metric_type="L2", |
| 79 | + ) |
| 80 | + self.milvus_client.create_collection( |
| 81 | + collection_name=name, |
| 82 | + schema=vannasql_schema, |
| 83 | + index_params=vannasql_index_params, |
| 84 | + consistency_level="Strong" |
| 85 | + ) |
| 86 | + |
| 87 | + def _create_ddl_collection(self, name: str): |
| 88 | + if not self.milvus_client.has_collection(collection_name=name): |
| 89 | + vannaddl_schema = MilvusClient.create_schema( |
| 90 | + auto_id=False, |
| 91 | + enable_dynamic_field=False, |
| 92 | + ) |
| 93 | + vannaddl_schema.add_field(field_name="id", datatype=DataType.VARCHAR, max_length=65535, is_primary=True) |
| 94 | + vannaddl_schema.add_field(field_name="ddl", datatype=DataType.VARCHAR, max_length=65535) |
| 95 | + vannaddl_schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self._embedding_dim) |
| 96 | + |
| 97 | + vannaddl_index_params = self.milvus_client.prepare_index_params() |
| 98 | + vannaddl_index_params.add_index( |
| 99 | + field_name="vector", |
| 100 | + index_name="vector", |
| 101 | + index_type="AUTOINDEX", |
| 102 | + metric_type="L2", |
| 103 | + ) |
| 104 | + self.milvus_client.create_collection( |
| 105 | + collection_name=name, |
| 106 | + schema=vannaddl_schema, |
| 107 | + index_params=vannaddl_index_params, |
| 108 | + consistency_level="Strong" |
| 109 | + ) |
| 110 | + |
| 111 | + def _create_doc_collection(self, name: str): |
| 112 | + if not self.milvus_client.has_collection(collection_name=name): |
| 113 | + vannadoc_schema = MilvusClient.create_schema( |
| 114 | + auto_id=False, |
| 115 | + enable_dynamic_field=False, |
| 116 | + ) |
| 117 | + vannadoc_schema.add_field(field_name="id", datatype=DataType.VARCHAR, max_length=65535, is_primary=True) |
| 118 | + vannadoc_schema.add_field(field_name="doc", datatype=DataType.VARCHAR, max_length=65535) |
| 119 | + vannadoc_schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=self._embedding_dim) |
| 120 | + |
| 121 | + vannadoc_index_params = self.milvus_client.prepare_index_params() |
| 122 | + vannadoc_index_params.add_index( |
| 123 | + field_name="vector", |
| 124 | + index_name="vector", |
| 125 | + index_type="AUTOINDEX", |
| 126 | + metric_type="L2", |
| 127 | + ) |
| 128 | + self.milvus_client.create_collection( |
| 129 | + collection_name=name, |
| 130 | + schema=vannadoc_schema, |
| 131 | + index_params=vannadoc_index_params, |
| 132 | + consistency_level="Strong" |
| 133 | + ) |
| 134 | + |
| 135 | + def add_question_sql(self, question: str, sql: str, **kwargs) -> str: |
| 136 | + if len(question) == 0 or len(sql) == 0: |
| 137 | + raise Exception("pair of question and sql can not be null") |
| 138 | + _id = str(uuid.uuid4()) + "-sql" |
| 139 | + embedding = self.embedding_function.encode_documents([question])[0] |
| 140 | + self.milvus_client.insert( |
| 141 | + collection_name="vannasql", |
| 142 | + data={ |
| 143 | + "id": _id, |
| 144 | + "text": question, |
| 145 | + "sql": sql, |
| 146 | + "vector": embedding |
| 147 | + } |
| 148 | + ) |
| 149 | + return _id |
| 150 | + |
| 151 | + def add_ddl(self, ddl: str, **kwargs) -> str: |
| 152 | + if len(ddl) == 0: |
| 153 | + raise Exception("ddl can not be null") |
| 154 | + _id = str(uuid.uuid4()) + "-ddl" |
| 155 | + embedding = self.embedding_function.encode_documents([ddl])[0] |
| 156 | + self.milvus_client.insert( |
| 157 | + collection_name="vannaddl", |
| 158 | + data={ |
| 159 | + "id": _id, |
| 160 | + "ddl": ddl, |
| 161 | + "vector": embedding |
| 162 | + } |
| 163 | + ) |
| 164 | + return _id |
| 165 | + |
| 166 | + def add_documentation(self, documentation: str, **kwargs) -> str: |
| 167 | + if len(documentation) == 0: |
| 168 | + raise Exception("documentation can not be null") |
| 169 | + _id = str(uuid.uuid4()) + "-doc" |
| 170 | + embedding = self.embedding_function.encode_documents([documentation])[0] |
| 171 | + self.milvus_client.insert( |
| 172 | + collection_name="vannadoc", |
| 173 | + data={ |
| 174 | + "id": _id, |
| 175 | + "doc": documentation, |
| 176 | + "vector": embedding |
| 177 | + } |
| 178 | + ) |
| 179 | + return _id |
| 180 | + |
| 181 | + def get_training_data(self, **kwargs) -> pd.DataFrame: |
| 182 | + sql_data = self.milvus_client.query( |
| 183 | + collection_name="vannasql", |
| 184 | + output_fields=["*"], |
| 185 | + limit=MAX_LIMIT_SIZE, |
| 186 | + ) |
| 187 | + df = pd.DataFrame() |
| 188 | + df_sql = pd.DataFrame( |
| 189 | + { |
| 190 | + "id": [doc["id"] for doc in sql_data], |
| 191 | + "question": [doc["text"] for doc in sql_data], |
| 192 | + "content": [doc["sql"] for doc in sql_data], |
| 193 | + } |
| 194 | + ) |
| 195 | + df = pd.concat([df, df_sql]) |
| 196 | + |
| 197 | + ddl_data = self.milvus_client.query( |
| 198 | + collection_name="vannaddl", |
| 199 | + output_fields=["*"], |
| 200 | + limit=MAX_LIMIT_SIZE, |
| 201 | + ) |
| 202 | + |
| 203 | + df_ddl = pd.DataFrame( |
| 204 | + { |
| 205 | + "id": [doc["id"] for doc in ddl_data], |
| 206 | + "question": [None for doc in ddl_data], |
| 207 | + "content": [doc["ddl"] for doc in ddl_data], |
| 208 | + } |
| 209 | + ) |
| 210 | + df = pd.concat([df, df_ddl]) |
| 211 | + |
| 212 | + doc_data = self.milvus_client.query( |
| 213 | + collection_name="vannadoc", |
| 214 | + output_fields=["*"], |
| 215 | + limit=MAX_LIMIT_SIZE, |
| 216 | + ) |
| 217 | + |
| 218 | + df_doc = pd.DataFrame( |
| 219 | + { |
| 220 | + "id": [doc["id"] for doc in doc_data], |
| 221 | + "question": [None for doc in doc_data], |
| 222 | + "content": [doc["doc"] for doc in doc_data], |
| 223 | + } |
| 224 | + ) |
| 225 | + df = pd.concat([df, df_doc]) |
| 226 | + return df |
| 227 | + |
| 228 | + def get_similar_question_sql(self, question: str, **kwargs) -> list: |
| 229 | + search_params = { |
| 230 | + "metric_type": "L2", |
| 231 | + "params": {"nprobe": 128}, |
| 232 | + } |
| 233 | + embeddings = self.embedding_function.encode_queries([question]) |
| 234 | + res = self.milvus_client.search( |
| 235 | + collection_name="vannasql", |
| 236 | + anns_field="vector", |
| 237 | + data=embeddings, |
| 238 | + limit=self.n_results, |
| 239 | + output_fields=["text", "sql"], |
| 240 | + search_params=search_params |
| 241 | + ) |
| 242 | + res = res[0] |
| 243 | + |
| 244 | + list_sql = [] |
| 245 | + for doc in res: |
| 246 | + dict = {} |
| 247 | + dict["question"] = doc["entity"]["text"] |
| 248 | + dict["sql"] = doc["entity"]["sql"] |
| 249 | + list_sql.append(dict) |
| 250 | + return list_sql |
| 251 | + |
| 252 | + def get_related_ddl(self, question: str, **kwargs) -> list: |
| 253 | + search_params = { |
| 254 | + "metric_type": "L2", |
| 255 | + "params": {"nprobe": 128}, |
| 256 | + } |
| 257 | + embeddings = self.embedding_function.encode_queries([question]) |
| 258 | + res = self.milvus_client.search( |
| 259 | + collection_name="vannaddl", |
| 260 | + anns_field="vector", |
| 261 | + data=embeddings, |
| 262 | + limit=self.n_results, |
| 263 | + output_fields=["ddl"], |
| 264 | + search_params=search_params |
| 265 | + ) |
| 266 | + res = res[0] |
| 267 | + |
| 268 | + list_ddl = [] |
| 269 | + for doc in res: |
| 270 | + list_ddl.append(doc["entity"]["ddl"]) |
| 271 | + return list_ddl |
| 272 | + |
| 273 | + def get_related_documentation(self, question: str, **kwargs) -> list: |
| 274 | + search_params = { |
| 275 | + "metric_type": "L2", |
| 276 | + "params": {"nprobe": 128}, |
| 277 | + } |
| 278 | + embeddings = self.embedding_function.encode_queries([question]) |
| 279 | + res = self.milvus_client.search( |
| 280 | + collection_name="vannadoc", |
| 281 | + anns_field="vector", |
| 282 | + data=embeddings, |
| 283 | + limit=self.n_results, |
| 284 | + output_fields=["doc"], |
| 285 | + search_params=search_params |
| 286 | + ) |
| 287 | + res = res[0] |
| 288 | + |
| 289 | + list_doc = [] |
| 290 | + for doc in res: |
| 291 | + list_doc.append(doc["entity"]["doc"]) |
| 292 | + return list_doc |
| 293 | + |
| 294 | + def remove_training_data(self, id: str, **kwargs) -> bool: |
| 295 | + if id.endswith("-sql"): |
| 296 | + self.milvus_client.delete(collection_name="vannasql", ids=[id]) |
| 297 | + return True |
| 298 | + elif id.endswith("-ddl"): |
| 299 | + self.milvus_client.delete(collection_name="vannaddl", ids=[id]) |
| 300 | + return True |
| 301 | + elif id.endswith("-doc"): |
| 302 | + self.milvus_client.delete(collection_name="vannadoc", ids=[id]) |
| 303 | + return True |
| 304 | + else: |
| 305 | + return False |
0 commit comments