-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNN.as
173 lines (164 loc) · 5.13 KB
/
NN.as
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
class NeuralNetwork
{
array<array<float>> Layer1;
array<array<float>> Layer2;
int NNnumber=0;
string MYname="DEFAULT";
NeuralNetwork(int inpt,int hiddenL1,int outputs,float min,float max){
print("new NN with "+inpt+" inpt and outputs"+outputs+ "and "+hiddenL1+" hidden");
InitNN(inpt,hiddenL1,outputs,min,max);
}
NeuralNetwork(string id){
print("NN loads from file "+id);
loadfromFile(id);
MYname = id;
}
float pseudoTanh(float x){
return (x<-1.0? -1.0 : ((x>1.0) ? 1.0 : x));
}
array<float> MatMul(array<array<float>> mat,array<float> x)
{
if ((x.length != mat[0].length-1)) print("OH OH len x is"+x.length+ "and mat[0].length is"+mat[0].length);
array<float> res(mat.length);
//print("MAT MUL");
//print("Pre FOr"+res.length+" and mat [0] is"+mat[0].length);
for (int i=0;i<mat.length;i++){
res[i]=0;
int j=0;
for (;j<mat[i].length-1;j++){
//print(i+") mat "+mat[i][j]+" Res"+ res[i]);
//print("x "+j+" * "+"wheigts "+i+", "+j);
res[i]+=mat[i][j]*x[j];
}
//print("bias "+i+", "+j);
res[i]+=mat[i][j];
}
//print("ended FOr"+res.length);
for (int i=0;i<mat.length;i++){
res[i] =pseudoTanh(res[i]);// Maths::Sin(res[i]);//
//print(i+") res "+res[i]);
}
//print("ended other For");
return res;
}
array<array<float>> InitRandomLayer(float max,float min, int inpu,int hiddenUnits)
{
array<array<float>> Layer(hiddenUnits);
for (int i=0;i<hiddenUnits;i++)
{
int j=0;
Layer[i]=array<float>(inpu+1);
for (j=0;j<inpu+1;j++)
{
Layer[i][j]=(XORRandom(100000)/100000.0)*(max-min)+min;
}
}
return Layer;
}
void AddNoiseToNetwork(float min,float max){
Layer1 = AddNoiseToLayer(Layer1,min,max);
Layer2 = AddNoiseToLayer(Layer2,min,max);
}
array<array<float>> AddNoiseToLayer(array<array<float>> mat,float min,float max)
{
for (int i=0;i<mat.length;i++){
mat[i]=AddNoiseToVec(mat[i],min,max);
}
return mat;
}
array<float> AddNoiseToVec(array<float> arr,float min,float max)
{
int i=0;
for (;i<arr.length();i++){
arr[i]+=(XORRandom(100000)/100000.0)*(max-min)+min;//100 for [-1.5,1.5]
}
return arr;
}
void loadfromFile(string name){
ConfigFile cfg = ConfigFile();
string cost_config_file = name+".cfg";
cfg.loadFile("../Cache/"+cost_config_file);
array<float> neurons();
cfg.readIntoArray_f32(neurons,"Neurons");
print(FloatArray2String(neurons));
int s1 = neurons[0];
int s2 = neurons[1];
print("hidden1 "+s1);
print("hidden2 "+s2);
Layer1.resize(s1);
Layer2.resize(s2);
for (int i=0;i<Layer1.length;i++)
{
Layer1[i].resize(0);
cfg.readIntoArray_f32(Layer1[i],"L1Neuron"+i);
}
for (int i=0;i<Layer2.length;i++)
{
Layer2[i].resize(0);
cfg.readIntoArray_f32(Layer2[i],"L2Neuron"+i);
}
}
void printLayers()
{
for (int i=0;i<Layer1.length;i++)
{
print("L1Neuron"+i+")"+FloatArray2String(Layer1[i]));
}
for (int i=0;i<Layer2.length;i++)
{
print("L2Neuron"+i+")"+FloatArray2String(Layer2[i]));
}
}
void saveToFile(string name){
ConfigFile cfg = ConfigFile();
string cost_config_file = name+".cfg";
cfg.loadFile("../Cache/"+cost_config_file);
array<float> neurons(2);
neurons[0] = Layer1.length;
neurons[1] = Layer2.length;
cfg.add_string("Neurons",FloatArray2String(neurons));
for (int i=0;i<Layer1.length;i++)
{
cfg.add_string("L1Neuron"+i,FloatArray2String(Layer1[i]));
}
for (int i=0;i<Layer2.length;i++)
{
cfg.add_string("L2Neuron"+i,FloatArray2String(Layer2[i]));
}
cfg.saveFile(cost_config_file);
}
void InitNN(int inpt,int hiddenL1,int outputs,float min,float max)
{
Layer1 = InitRandomLayer(min,max,inpt,hiddenL1);
Layer2 = InitRandomLayer(min,max,hiddenL1,outputs);
print("NN initialized");
//print("LAYER1\n"+Mat2String(Layer1));
//print("LAYER2\n"+Mat2String(Layer2));
}
array<float> predict(array<float> inpt)
{
//print(FloatArray2String(inpt));
array<float> out1 = MatMul(Layer1,inpt);
//print(FloatArray2String(out1));
array<float> out2 = MatMul(Layer2,out1);
//print(FloatArray2String(out2));
return out2;
}
}
string Mat2String(array<array<float>> mat)
{
string s = "";
for (int i=0;i<mat.length;i++){
s+=FloatArray2String(mat[i])+"\n";
}
return s;
}
string FloatArray2String(array<float> arr)
{
string s = "";
int i=0;
for (;i<arr.length();i++){
s+=arr[i]+"; ";
}
return s;
}