forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_integration_espnet2.sh
executable file
·346 lines (313 loc) · 19.8 KB
/
test_integration_espnet2.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env bash
set -euo pipefail
source tools/activate_python.sh
PYTHONPATH="${PYTHONPATH:-}:$(pwd)/tools/s3prl"
export PYTHONPATH
python="coverage run --append"
cwd=$(pwd)
gen_dummy_coverage(){
# To avoid a problem when parallel running for `coverage run`.
# Please put this command after cd ./egs2/foo/bar
touch empty.py; ${python} empty.py
}
#### Make sure chainer-independent ####
python3 -m pip uninstall -y chainer
# [ESPnet2] test asr recipe
cd ./egs2/mini_an4/asr1
gen_dummy_coverage
echo "==== [ESPnet2] ASR ==="
./run.sh --stage 1 --stop-stage 1
feats_types="raw fbank_pitch"
token_types="bpe char"
for t in ${feats_types}; do
./run.sh --stage 2 --stop-stage 4 --feats-type "${t}" --python "${python}"
done
cp -r dump/raw data/
./run.sh --stage 2 --stop-stage 4 --feats-type "raw_copy" \
--train_set raw/train_nodev --valid_set raw/train_dev --test_sets raw/test --python "${python}"
for t in ${token_types}; do
./run.sh --stage 5 --stop-stage 5 --token-type "${t}" --python "${python}"
done
use_lm=true
for t in ${feats_types}; do
for t2 in ${token_types}; do
echo "==== feats_type=${t}, token_types=${t2} ==="
./run.sh --use_lm ${use_lm} --ngpu 0 --stage 6 --stop-stage 13 --skip-packing false --feats-type "${t}" --token-type "${t2}" --python "${python}" --asr-args "--num_workers 0"
done
use_lm=false
echo "==== feats_type=raw_copy, token_types=bpe ==="
cp -r dump/raw data/
./run.sh --use_lm ${use_lm} --ngpu 0 --stage 4 --stop-stage 13 --skip-packing false --feats-type "raw_copy" --token-type "${t2}" \
--train_set raw/train_nodev --valid_set raw/train_dev --test_sets raw/test --python "${python}" --asr-args "--num_workers 0"
done
echo "==== feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" \
--asr-args "--model_conf extract_feats_in_collect_stats=false --num_workers 0"
echo "==== feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn, with data augmentation ==="
./run.sh --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type "bpe" \
--asr_config "conf/train_asr_rnn_data_aug_debug.yaml" \
--feats_normalize "utterance_mvn" --python "${python}" \
--asr-args "--model_conf extract_feats_in_collect_stats=false --num_workers 0"
echo "==== use_streaming, feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --use_streaming true --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" \
--asr_config "" --asr-tag "train_raw_bpe_streaming" \
--asr-args "--model_conf extract_feats_in_collect_stats=false --encoder=contextual_block_transformer
--encoder_conf='{'block_size': 40, 'hop_size': 16, 'look_ahead': 16, 'output_size': 2, 'attention_heads': 2, 'linear_units': 2, 'num_blocks': 1}'
--decoder=transformer --decoder_conf='{'attention_heads': 2, 'linear_units': 2, 'num_blocks': 1}'
--max_epoch 1 --num_iters_per_epoch 1 --batch_size 2 --batch_type folded --num_workers 0"
if python3 -c "from warprnnt_pytorch import RNNTLoss" &> /dev/null; then
echo "==== Transducer, feats_type=raw, token_types=bpe ==="
./run.sh --asr-tag "espnet_model_transducer" --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false \
--feats-type "raw" --token-type "bpe" --python "${python}" \
--asr-args "--decoder transducer --decoder_conf hidden_size=2 --model_conf ctc_weight=0.0 --joint_net_conf joint_space_size=2 --num_workers 0 \
--best_model_criterion '(valid, loss, min)'" --inference_asr_model "valid.loss.best.pth"
if [ "$(python3 -c "import torch; print(torch.cuda.is_available())")" == "True" ]; then
echo "==== Multi-Blank Transducer, feats_type=raw, token_types=bpe ==="
./run.sh --asr-tag "espnet_model_multi_blank_transducer" --ngpu 1 --stage 10 --stop-stage 13 --skip-packing false \
--feats-type "raw" --token-type "bpe" --python "${python}" \
--asr-tag "train_multi_black_transducer" \
--asr_args "--decoder transducer --decoder_conf hidden_size=2 --model_conf ctc_weight=0.0 --joint_net_conf joint_space_size=2 \
--best_model_criterion '(valid, loss, min)' --model_conf transducer_multi_blank_durations=[2] \
--max_epoch 1 --num_iters_per_epoch 1 --batch_size 2 --batch_type folded --num_workers 0" \
--inference_asr_model "valid.loss.best.pth" --inference_config "conf/decode_multi_blank_transducer_debug.yaml"
fi
fi
if python3 -c "import k2" &> /dev/null; then
echo "==== use_k2, num_paths > nll_batch_size, feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --num_paths 4 --nll_batch_size 2 --use_k2 true --ngpu 0 --stage 12 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" --asr-args "--model_conf extract_feats_in_collect_stats=false --num_workers 0"
echo "==== use_k2, num_paths == nll_batch_size, feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --num_paths 2 --nll_batch_size 2 --use_k2 true --ngpu 0 --stage 12 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" --asr-args "--model_conf extract_feats_in_collect_stats=false --num_workers 0"
fi
if python3 -c "from warprnnt_pytorch import RNNTLoss" &> /dev/null; then
echo "==== [ESPnet2] ASR Transducer (standalone) ==="
for t in ${token_types}; do
asr_tag="transducer_${t}"
echo "==== [Conformer-RNN-T] feats_type=raw, token_types=${t}, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --asr_config "" --asr_task "asr_transducer" --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type ${t} \
--feats_normalize "utterance_mvn" --python "${python}" --inference_asr_model "valid.loss.best.pth" \
--asr-tag "${asr_tag}_conformer" \
--asr-args "--model_conf extract_feats_in_collect_stats=false \
--encoder_conf body_conf='[{'block_type': 'conformer', 'hidden_size': 2, 'linear_size': 4, 'heads': 2, 'conv_mod_kernel_size': 3}]' \
--decoder_conf='{'embed_size': 4, 'hidden_size': 4}' --joint_network_conf joint_space_size=4 \
--max_epoch 1 --num_iters_per_epoch 1 --batch_size 2 --batch_type folded --num_workers 0"
echo "==== [Streaming Conformer-RNN-T] feats_type=raw, token_types=${t}, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --asr_config "" --asr_task "asr_transducer" --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type ${t} \
--feats_normalize "utterance_mvn" --python "${python}" --inference_asr_model "valid.loss.best.pth" \
--asr-tag "${asr_tag}_conformer_streaming" \
--asr-args "--model_conf extract_feats_in_collect_stats=false \
--encoder_conf main_conf='{'dynamic_chunk_training': True}' \
--encoder_conf body_conf='[{'block_type': 'conformer', 'hidden_size': 2, 'linear_size': 4, 'heads': 2, 'conv_mod_kernel_size': 3}]' \
--decoder_conf='{'embed_size': 4, 'hidden_size': 4}' --joint_network_conf joint_space_size=4 \
--max_epoch 1 --num_iters_per_epoch 1 --batch_size 2 --batch_type folded --num_workers 0" \
--inference-args "--streaming true --decoding_window 160 --left_context 2"
done
fi
echo "==== [PIT_ASR] feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
for i in $(seq 2); do
for rr in raw raw/org; do
cp dump/${rr}/train_nodev/text dump/${rr}/train_nodev/text_spk${i}
cp dump/${rr}/train_dev/text dump/${rr}/train_dev/text_spk${i}
done
cp dump/raw/test/text dump/raw/test/text_spk${i}
cp dump/raw/test_seg/text dump/raw/test_seg/text_spk${i}
done
./run_multispkr.sh --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --token-type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" \
--asr_config "" \
--asr_tag "train_multispkr_raw_en_bpe30" \
--asr-args "--model_conf extract_feats_in_collect_stats=false \
--ctc_conf reduce=False --encoder transformer_multispkr \
--encoder_conf '{'num_blocks': 2, 'num_blocks_sd': 2, 'num_inf': 2, 'output_size': 2, 'attention_heads': 2, 'linear_units': 2}' \
--decoder rnn \
--model pit_espnet --model_conf '{'num_inf': 2, 'num_ref': 2}' \
--preprocessor multi --preprocessor_conf text_name='['text', 'text_spk2']' \
--max_epoch 1 --num_iters_per_epoch 1 --batch_size 2 --batch_type folded --num_workers 0" \
--inference-args "--multi_asr true"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
# [ESPnet2] test tts recipe
cd ./egs2/mini_an4/tts1
gen_dummy_coverage
echo "==== [ESPnet2] TTS ==="
./run.sh --ngpu 0 --stage 1 --stop-stage 7 --skip-packing false --python "${python}" --train-args "--num_workers 0"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
# [ESPnet2] test gan-tts recipe
# NOTE(kan-bayashi): pytorch 1.4 - 1.6 works but 1.6 has a problem with CPU,
# so we test this recipe using only pytorch > 1.6 here.
# See also: https://github.com/pytorch/pytorch/issues/42446
if python3 -c 'import torch as t; from packaging.version import parse as L; assert L(t.__version__) > L("1.6")' &> /dev/null; then
./run.sh --fs 22050 --tts_task gan_tts --feats_extract linear_spectrogram --feats_normalize none --inference_model latest.pth \
--ngpu 0 --stop-stage 7 --skip-packing false --python "${python}" \
--train-config "" --train-args "--max_epoch 1 --num_iters_per_epoch 1 --batch_size 1 --batch_type folded --num_workers 0"
rm -rf exp dump data
fi
cd "${cwd}"
# [ESPnet2] test enh recipe
if python -c 'import torch as t; from packaging.version import parse as L; assert L(t.__version__) >= L("1.2.0")' &> /dev/null; then
cd ./egs2/mini_an4/enh1
gen_dummy_coverage
echo "==== [ESPnet2] ENH ==="
./run.sh --stage 1 --stop-stage 1 --python "${python}"
feats_types="raw"
for t in ${feats_types}; do
echo "==== feats_type=${t} with preprocessor ==="
./run.sh --ngpu 0 --stage 2 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" \
--extra_wav_list "rirs.scp noises.scp" --enh_config ./conf/train_with_preprocessor_debug.yaml --enh-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" \
--enh_config conf/train_with_data_aug_debug.yaml --enh-args "--num_workers 0"
./run.sh --ngpu 0 --stage 2 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 2 --python "${python}" \
--enh_config conf/train_with_dynamic_mixing_debug.yaml --enh-args "--num_workers 0"
done
rm data/**/utt2category 2>/dev/null || true
rm -r dump
for t in ${feats_types}; do
echo "==== feats_type=${t} without preprocessor ==="
./run.sh --ngpu 0 --stage 2 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" --enh-args "--num_workers 0"
./run.sh --ngpu 0 --stage 6 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" \
--enh_config conf/train_with_chunk_iterator_debug.yaml --enh-args "--num_workers 0"
done
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
fi
# [ESPnet2] test enh_tse recipe
if python -c 'import torch as t; from packaging.version import parse as L; assert L(t.__version__) >= L("1.2.0")' &> /dev/null; then
cd ./egs2/mini_an4/tse1
gen_dummy_coverage
echo "==== [ESPnet2] ENH_TSE ==="
feats_types="raw"
for t in ${feats_types}; do
echo "==== feats_type=${t} ==="
./run.sh --ngpu 0 --stage 1 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" --enh-args "--num_workers 0"
./run.sh --ngpu 0 --stage 3 --stop-stage 6 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" \
--train_set train_nodev_unk_nspk --valid_set test_unk_nspk --test_sets "train_dev_unk_nspk" \
--enh_config ./conf/train_variable_nspk_debug.yaml --enh-args "--num_workers 0" --variable_num_refs true
./run.sh --ngpu 0 --stage 1 --stop-stage 10 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" \
--local_data_opts "--random-enrollment true" --enh_config ./conf/train_random_enrollment_debug.yaml --enh-args "--num_workers 0"
./run.sh --ngpu 0 --stage 3 --stop-stage 6 --skip-packing false --feats-type "${t}" --ref-num 1 --python "${python}" \
--train_set train_nodev_unk_nspk --valid_set test_unk_nspk --test_sets "train_dev_unk_nspk" \
--enh_config ./conf/train_variable_nspk_random_enrollment_debug.yaml --enh-args "--num_workers 0" --variable_num_refs true
done
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
fi
# [ESPnet2] test ssl1 recipe
if python3 -c 'import torch as t; from packaging.version import parse as L; assert L(t.__version__) >= L("1.12.0")' &> /dev/null; then
cd ./egs2/mini_an4/ssl1
gen_dummy_coverage
echo "==== [ESPnet2] SSL1/HUBERT ==="
./run.sh --ngpu 0 --stage 1 --stop-stage 7 --feats-type "raw" --token_type "word" --skip_upload_hf false --python "${python}" --hubert-args "--num_workers 0"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
fi
# [ESPnet2] test enh_asr1 recipe
if python -c 'import torch as t; from packaging.version import parse as L; assert L(t.__version__) >= L("1.2.0")' &> /dev/null; then
cd ./egs2/mini_an4/enh_asr1
gen_dummy_coverage
echo "==== [ESPnet2] ENH_ASR ==="
./run.sh --ngpu 0 --stage 0 --stop-stage 15 --skip-packing false --skip-upload_hf false --feats-type "raw" --spk-num 1 --enh_asr_args "--enh_separator_conf num_spk=1 --num_workers 0" --python "${python}"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
fi
# [ESPnet2] test st recipe
cd ./egs2/mini_an4/st1
echo "==== [ESPnet2] ST ==="
./run.sh --stage 1 --stop-stage 1
feats_types="raw fbank_pitch"
token_types="bpe char"
for t in ${feats_types}; do
./run.sh --stage 2 --stop-stage 4 --feats-type "${t}" --python "${python}"
done
for t in ${token_types}; do
./run.sh --stage 5 --stop-stage 5 --tgt_token_type "${t}" --src_token_type "${t}" --python "${python}"
done
use_lm=true
for t in ${feats_types}; do
for t2 in ${token_types}; do
echo "==== feats_type=${t}, token_types=${t2} ==="
./run.sh --use_lm ${use_lm} --ngpu 0 --stage 6 --stop-stage 13 --skip-packing false --feats-type "${t}" --tgt_token_type "${t2}" --src_token_type "${t2}" --python "${python}" --st-args "--num_workers 0"
done
use_lm=false
done
echo "==== feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --tgt_token_type "bpe" --src_token_type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" --st-args "--model_conf extract_feats_in_collect_stats=false --num_workers 0"
echo "==== use_streaming, feats_type=raw, token_types=bpe, model_conf.extract_feats_in_collect_stats=False, normalize=utt_mvn ==="
./run.sh --use_streaming true --ngpu 0 --stage 10 --stop-stage 13 --skip-packing false --feats-type "raw" --tgt_token_type "bpe" --src_token_type "bpe" \
--feats_normalize "utterance_mvn" --python "${python}" \
--st-config conf/train_st_streaming_debug.yaml --st-args "--model_conf extract_feats_in_collect_stats=false --num_workers 0"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
# [ESPnet2] test asr2 recipe
cd ./egs2/mini_an4/asr2
gen_dummy_coverage
echo "==== [ESPnet2] ASR2 ==="
./run.sh --ngpu 0 --stage 1 --stop-stage 15 --skip-packing false --use-lm false --python "${python}" --asr-args "--num_workers 0"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
# [ESPnet2] test spk1 recipe
cd ./egs2/mini_an4/spk1
gen_dummy_coverage
echo "==== [ESPnet2] SPK ==="
./run.sh --ngpu 0 --stage 0 --stop-stage 4 --feats-type "raw" --python "${python}" --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_rawnet3_dataaug_debug.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_rawnet3_sampler.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_ecapa.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_xvector.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_ska.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_identity.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 5 --stop-stage 5 --feats-type "raw" --python "${python}" --spk_config conf/train_conformer.yaml --spk-args "--num_workers 0"
./run.sh --ngpu 0 --stage 6 --stop-stage 7 --feats-type "raw" --python "${python}" --spk_config conf/train_rawnet3_sampler.yaml --spk-args "--num_workers 0" --inference_model "valid.eer.ave.pth"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
# [ESPnet2] test s2t1 recipe
cd ./egs2/mini_an4/s2t1
gen_dummy_coverage
echo "==== [ESPnet2] S2T ==="
./run.sh --ngpu 0 --stage 1 --stop_stage 13 --use_lm false --feats_type raw --audio_format flac.ark --token_type bpe --python "${python}"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
# [ESPnet2] test s2st1 recipe
cd ./egs2/mini_an4/s2st1
gen_dummy_coverage
echo "==== [ESPnet2] S2ST ==="
./run.sh --ngpu 0 --stage 1 --stop_stage 8 --use_discrete_unit false --s2st_config conf/s2st_spec_debug.yaml --python "${python}"
if python3 -c "import s3prl" &> /dev/null; then
./run.sh --ngpu 0 --stage 1 --stop_stage 8 --python "${python}" --use_discrete_unit true --s2st_config conf/train_s2st_discrete_unit_debug.yaml --clustering_num_threads 2 --feature_num_clusters 5
fi
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data ckpt .cache
cd "${cwd}"
# [ESPnet2] test lm1 recipe
cd ./egs2/mini_an4/lm1
gen_dummy_coverage
echo "==== [ESPnet2] LM ==="
./run.sh --ngpu 0 --stage 1 --stop-stage 12 --python "${python}"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
# [ESPnet2] test codec1 recipe
cd ./egs2/mini_an4/codec1
gen_dummy_coverage
echo "==== [ESPnet2] Codec ==="
./run.sh --ngpu 0 --stage 1 --stop_stage 6 --python "${python}"
# Remove generated files in order to reduce the disk usage
rm -rf exp dump data
cd "${cwd}"
echo "=== report ==="
coverage combine egs2/*/*/.coverage
coverage report
coverage xml