Skip to content

Latest commit

 

History

History
74 lines (66 loc) · 4.43 KB

README.md

File metadata and controls

74 lines (66 loc) · 4.43 KB

TA2V: Text-Audio Guided Video Generation

This is the reimplementation and extension of Text&Audio-guided Video Maker (TAgVM) model for TA2V task base on (https://github.com/Minglu58/TA2V). We pay more attention to model inference and performance evaluation.

Model Inference workflow

Examples

Music Performance Videos

generation_stage2_5_db_39_Jerusalem_96_21 generation_stage2_3_va_44_K515_136_16

Landscape Videos

generation_stage2_fire_crackling_136_1_44 generation_stage2_squishing_water_134_6_45

Sampling Procedure

Sample Short Music Performance Videos

  • gpt_text_ckpt: path to GPT checkpoint
  • vqgan_ckpt: path to video VQGAN checkpoint
  • data_path: path to dataset, you can change it to post_landscape for Landscape-VAT dataset
  • load_vid_len: for URMP-VAT, it is set to 90 (fps=30); for Landscape-VAT, it is set to 30 (fps=10)
  • text_emb_model: model to encode text, choices: bert, clip
  • audio_emb_model: model to encode audio, choices: audioclip, wav2clip
  • text_stft_cond: load text-audio-video data
  • n_sample: the number of videos need to be sampled
  • run: index for each run
  • resolution: resolution used in training video VQGAN procedure
  • model_output_size: the resolution when training the diffusion model
  • audio_guidance_lambda: coefficient to control audio guidance
  • direction_lambda: coefficient to control semantic change consistency of audio and video
  • text_guidance_lambda: coefficient to control text guidance
  • diffusion_ckpt: path to diffusion model
python scripts/sample_tav.py --gpt_text_ckpt /home/ubuntu/saved_ckpts/landscape-VAT_GPT.ckpt \
--vqgan_ckpt /home/ubuntu/saved_ckpts/landscape-VAT_video_VQGAN.ckpt --text_emb_model bert \
--data_path /home/ubuntu/11785Project/datasets/post_landscape/ --top_k 2048 --top_p 0.80 --n_sample 50 --run 17 --dataset landscape --audio_emb_model audioclip --resolution 96 --batch_size 1 --model_output_size 128 --noise_schedule cosine \
--iterations_num 1 --audio_guidance_lambda 10000 --direction_lambda 5000 --text_guidance_lambda 10000 \
--diffusion_ckpt /home/ubuntu/saved_ckpts/landscape-VAT_diffusion.pt
python scripts/sample_tav.py --gpt_text_ckpt /home/ubuntu/saved_ckpts/URMP-VAT_GPT.ckpt --text_stft_cond \
--vqgan_ckpt /home/ubuntu/saved_ckpts/URMP-VAT_video_VQGAN.ckpt --text_emb_model bert \
--data_path /home/ubuntu/11785Project/datasets/post_URMP/ --top_k 2048 --top_p 0.80 --n_sample 50 --run 17 --dataset URMP --audio_emb_model audioclip --resolution 96 --batch_size 1 --model_output_size 128 --noise_schedule cosine \
--iterations_num 1 --audio_guidance_lambda 10000 --direction_lambda 5000 --text_guidance_lambda 10000 \
--diffusion_ckpt /home/ubuntu/saved_ckpts/URMP-VAT_diffusion.pt

Calculate Evaluation Metrics

  • exp_tag: name of result folder, which is under results folder
  • audio_folder: audio folder name, default: audio
  • fake2_video_folder: video folder name fake stage2, default: fake_stage2
  • txt_folder: text folder name, default: txt
  • CLIP audio score
python tools/clip_score/clip_audio.py --exp_tag 17_tav_landscape --audio_folder audio --fake2_video_folder fake_stage2 --audio_emb_model audioclip
  • CLIP text score
python tools/clip_score/clip_text.py --exp_tag 17_tav_landscape --txt_folder txt --fake2_video_folder fake_stage2
  • real_folder: ground-truth video folder name, default: real
  • fake2_folder: generated stage 2 video folder name, default: fake_stage2
  • fake1_folder: generated stage 1 video folder name, default: fake_stage1
  • mode: mode to calculate FVD, FID scores, choices: full, size
  • FVD
python tools/tf_fvd/fvd.py --exp_tag 17_tav_landscape --real_folder real --fake2_folder fake_stage2 --fake1_folder fake_stage1 --mode full
  • FID
python tools/tf_fvd/fid.py --exp_tag 17_tav_landscape --real_folder real --fake2_folder fake_stage2 --fake1_folder fake_stage1 --mode full