-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tokenizer.py
97 lines (74 loc) · 3.12 KB
/
train_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python
import os
from typing import List
from tokenizers import Tokenizer
from tokenizers.models import WordLevel, BPE, Unigram
from tokenizers.trainers import WordLevelTrainer, BpeTrainer, UnigramTrainer
from tokenizers.pre_tokenizers import ByteLevel, Metaspace, Whitespace
from tokenizers.processors import TemplateProcessing
from transformers import PreTrainedTokenizerFast
from languagemodels.argparser_factory import ArgumentParserFactory
SUPPORTED_TOKENIZERS = {
"word-level" : (WordLevel, WordLevelTrainer, Whitespace),
"bpe": (BPE, BpeTrainer, ByteLevel),
"unigram": (Unigram, UnigramTrainer, Metaspace),
}
def train_tokenizer(tokenizer_type: str, data: List[str], vocab_size: int, \
eos_token: str="</s>", pad_token: str="<pad>", unk_token: str="<unk>", \
lossy_context: bool=False, lossy_context_token="<b>") -> Tokenizer:
tokenizer_cls, trainer_cls, pre_tokenizer_cls = SUPPORTED_TOKENIZERS[tokenizer_type]
tokenizer = Tokenizer(model=tokenizer_cls(unk_token=unk_token))
special_tokens = [unk_token, eos_token, pad_token]
if lossy_context:
special_tokens.append(lossy_context_token)
print(special_tokens)
trainer = trainer_cls(
vocab_size=vocab_size,
special_tokens=special_tokens
)
tokenizer.pre_tokenizer = pre_tokenizer_cls()
tokenizer.train(data, trainer)
tokenizer.post_processor = TemplateProcessing(
single=f"{eos_token} $A",
special_tokens=[(t, tokenizer.token_to_id(t)) for t in [eos_token]]
)
return tokenizer
def main():
parser = ArgumentParserFactory.get_argparser("tokenization")
args, = parser.parse_args_into_dataclasses()
# get input files
files = [
os.path.join(args.input_files_path, f) for f in os.listdir(args.input_files_path) if
os.path.isfile(os.path.join(args.input_files_path, f)) and
f.endswith(args.input_files_type)
]
print("Creating tokenizer from files:", files)
# load some data from the input files
with open(files[0], encoding="utf-8") as f:
data = f.read().split("\n") # read everything at once
# print first 5 lines
for idx, line in enumerate(data[:5]):
print(idx, line)
tokenizer = train_tokenizer(
args.tokenizer_type, files, args.vocab_size,
args.eos_token, args.pad_token, args.unk_token,
args.lossy_context, args.lossy_context_token
)
wrapped_tokenizer = PreTrainedTokenizerFast(
tokenizer_object=tokenizer,
pad_token=args.pad_token,
bos_token=args.eos_token,
eos_token=args.eos_token
)
# print some tokenized and encoded data
encoded_data = wrapped_tokenizer(data[:5])
print(encoded_data)
for input_ids in encoded_data["input_ids"]:
tokens = wrapped_tokenizer.convert_ids_to_tokens(input_ids)
print(input_ids, tokens)
# save tokenizer
os.makedirs(args.output_dir, exist_ok=True) # make sure output dir exists
print("Done. Saving tokenizer to:", args.output_dir)
wrapped_tokenizer.save_pretrained(args.output_dir)
if __name__ == '__main__':
main()