-
Notifications
You must be signed in to change notification settings - Fork 8
/
find_timezone.py
198 lines (160 loc) · 5.28 KB
/
find_timezone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
__author__ = 'uddhav kambli'
import sys
import json
import datetime
import math
import csv
# Ray Intersect Segment algorithm from
# http://rosettacode.org/wiki/Ray-casting_algorithm#Python
_eps = 0.00001
_huge = sys.float_info.max
_tiny = sys.float_info.min
def ray_intersect_segment(px, py, x1, y1, x2, y2):
''' takes a point p=Pt() and an edge of two endpoints a,b=Pt() of a line segment returns boolean
'''
ax,ay,bx,by = x1,y1,x2,y2
if ay > by:
ax,ay,bx,by = x2,y2,x1,y1
if py == ay or py == by:
px,py = px, py + _eps
intersect = False
if (py > by or py < ay) or (
px > max(ax, bx)):
return False
if px < min(ax, bx):
intersect = True
else:
if abs(ax - bx) > _tiny:
m_red = (by - ay) / float(bx - ax)
else:
m_red = _huge
if abs(ax - px) > _tiny:
m_blue = (py - ay) / float(px - ax)
else:
m_blue = _huge
intersect = m_blue >= m_red
return intersect
def _odd(x): return x%2 == 1
def is_point_inside(p, poly, ln):
s = 0
for i in range(ln):
j = (i + 1) % ln
s += ray_intersect_segment(p[1], p[0], poly[i][1], poly[i][0], poly[j][1], poly[j][0])
return _odd(s)
# Bing Maps Tiles System
# http://msdn.microsoft.com/en-us/library/bb259689.aspx
_earthRadius = 6378137
_minLatitude = -85.05112878
_maxLatitude = 85.05112878
_minLongitude = -180
_maxLongitude = 180
# Set level of detail for the final data set
# trade-off between size and number of polygons to test
# Decides the tiles-{_level}.json
_level = 11
# Clips a number to the specified minimum and maximum values.
def _clip(num, minValue, maxValue):
return min(max(num, minValue), maxValue)
# Converts a point from latitude/longitude WGS-84 coordinates (in degrees)
# into pixel XY coordinates at a specified level of detail.
def _latlngToPixelXY(lat, lng):
latitude = _clip(lat, _minLatitude, _maxLatitude)
longitude = _clip(lng, _minLongitude, _maxLongitude)
x = (longitude + 180) / 360.0
sinLatitude = math.sin(latitude * math.pi / 180.0)
y = 0.5 - math.log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * math.pi)
mapSize = 256 << _level
pixelX = int(_clip(x * mapSize + 0.5, 0, mapSize - 1))
pixelY = int(_clip(y * mapSize + 0.5, 0, mapSize - 1))
return pixelX, pixelY
# Converts pixel XY coordinates into tile XY coordinates of the tile containing
# the specified pixel.
def _pixelXYToTileXY(pixelX, pixelY):
return int(math.floor(pixelX / 256.0)), int(math.floor(pixelY / 256.0))
#files prepared by construct data.py
# Timezone IDs
with open('tzids.json', 'r') as data:
tzids = json.load(data)
# filename = 'tzids.csv'
# outfile = open(filename, 'wb')
# idx = 1
#
# outfile.write("key,name\n")
# for tzid in tzids:
# outfile.write(str(idx) + ',"' + tzid + '"\n')
# idx += 1
#
# outfile.close()
# Polygons File 1
with open('polygons-1.json', 'r') as data:
global polygons
polygons = json.load(data)
# Polygons File 2
with open('polygons-2.json', 'r') as data:
json_data = json.load(data)
polygons.extend(json_data)
#idx = 1
#l = len(polygons)
#per = l / 20
#start = 0
#end = per
#i = 0
#while start != l:
# i += 1
# with open('polygons-' + str(i) + '.csv', 'wb') as outfile:
# outfile.write("key,content\n")
# for polygon in polygons[start:end]:
# outfile.write(str(idx) + ',"' + json.dumps(polygon) + '"\n')
# idx += 1
#
# outfile.close()
#
# start = end
# end += per
# end = min(end, l)
# Tiles of a particular detail level
# contains tiles has many polygons mapping
with open('tiles-' + str(_level) + '.json', 'r') as data:
tiles = json.load(data)
# filename = 'tiles.csv'
# outfile = open(filename, 'wb')
#
# outfile.write("key,content\n")
# for k, v in tiles.iteritems():
# outfile.write(str(int(k) + 1) + ',"' + json.dumps(v) + '"\n')
#
# outfile.close()
# some locations
kentland_in = [ -87.446111, 40.769722 ]
boston_ma = [ -71.063611, 42.358056 ]
carrolton_tx = [ -96.890273, 32.953807 ]
hoover_dam = [ -114.737245, 36.016222 ]
mumbai_in = [ 72.8258, 18.9647 ]
quincy_ma = [ -71.0185, 42.2654 ]
pune_in = [ 73.8667, 18.5333 ]
border_pk = [ 70.988159, 24.717893 ]
border_in = [ 71.052704, 24.619804 ]
port_moresby = [ 151.994629, -4.512337 ]
caracas_vz = [ -66.916667, 10.5 ]
cape_canaveral = [ -80.6058589, 28.4051872 ]
# Location array
pos = [ caracas_vz, cape_canaveral, boston_ma, kentland_in, carrolton_tx, hoover_dam, mumbai_in, quincy_ma, pune_in, border_pk, border_in, port_moresby ]
# Find all timezones
for p in pos:
# index of polygon matched
index = 0
now = datetime.datetime.now()
pixelX, pixelY = _latlngToPixelXY(p[1], p[0])
tileX, tileY = _pixelXYToTileXY(pixelX, pixelY)
tIndex = str(tileX * (2 << _level) + tileY)
if tIndex in tiles:
polygon_indices = tiles[tIndex]
np = len(polygon_indices)
for polygon_index in polygon_indices:
polygon = polygons[polygon_index]
index += 1
ln = len(polygon)
if np == 1 or is_point_inside(p, polygon, ln):
print('location[' + str(p) + '][' + str(index) + ']: ', tzids[polygon_index])
print(datetime.datetime.now() - now)
break