Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Data Preparation for TUMTraf Intersection Dataset does not generates any train and val samples in tumtraf_i_processed directory. #2

Open
Uchan1996 opened this issue May 13, 2024 · 3 comments

Comments

@Uchan1996
Copy link

Uchan1996 commented May 13, 2024

@walzimmer
Hi, thank you for your great work.
I want to do data preparation code for Intersection dataset.
I succeeded in splitting the intersection dataset into train and val as README in tum-traffic-dataset-dev-kit repository says.
However, data preparation by create_tumtraf_data.py in this repository does not generates any train and val samples in tumtraf_i_processed directory.
How can I fix these things?
The output of create_tumtraf_data.py is displayed as below:

`split: ['training', 'validation']
Start converting ...
Converting split: training...
train sample: 0
Converting split: validation...
val sample: 0

Finished ...
creating groundtruth database
Create GT Database of TUMTrafNuscDataset
DATASETS: Registry(name=dataset, items={'CustomDataset': <class 'mmdet.datasets.custom.CustomDataset'>, 'CocoDataset': <class 'mmdet.datasets.coco.CocoDataset'>, 'CityscapesDataset': <class 'mmdet.datasets.cityscapes.CityscapesDataset'>, 'CocoPanopticDataset': <class 'mmdet.datasets.coco_panoptic.CocoPanopticDataset'>, 'ConcatDataset': <class 'mmdet.datasets.dataset_wrappers.ConcatDataset'>, 'RepeatDataset': <class 'mmdet.datasets.dataset_wrappers.RepeatDataset'>, 'ClassBalancedDataset': <class 'mmdet.datasets.dataset_wrappers.ClassBalancedDataset'>, 'MultiImageMixDataset': <class 'mmdet.datasets.dataset_wrappers.MultiImageMixDataset'>, 'DeepFashionDataset': <class 'mmdet.datasets.deepfashion.DeepFashionDataset'>, 'LVISV05Dataset': <class 'mmdet.datasets.lvis.LVISV05Dataset'>, 'LVISDataset': <class 'mmdet.datasets.lvis.LVISV05Dataset'>, 'LVISV1Dataset': <class 'mmdet.datasets.lvis.LVISV1Dataset'>, 'XMLDataset': <class 'mmdet.datasets.xml_style.XMLDataset'>, 'VOCDataset': <class 'mmdet.datasets.voc.VOCDataset'>, 'WIDERFaceDataset': <class 'mmdet.datasets.wider_face.WIDERFaceDataset'>, 'Custom3DDataset': <class 'mmdet3d.datasets.custom_3d.Custom3DDataset'>, 'NuScenesDataset': <class 'mmdet3d.datasets.nuscenes_dataset.NuScenesDataset'>, 'TUMTrafNuscDataset': <class 'mmdet3d.datasets.tumtraf_dataset.TUMTrafNuscDataset'>, 'TUMTrafV2XNuscDataset': <class 'mmdet3d.datasets.tumtraf_v2x_dataset.TUMTrafV2XNuscDataset'>, 'CBGSDataset': <class 'mmdet3d.datasets.dataset_wrappers.CBGSDataset'>})
completed: 0, elapsed: 0s
`

@Uchan1996
Copy link
Author

Uchan1996 commented May 13, 2024

@walzimmer
I think the paths in tools/data_converter/tumtraf_converter.py are wrong which are set from the line 97 to 104.
tumtraf_i directory includes train and val directories.
Each of the two directories has three directories (images, labels_point_clouds, point_clouds).
However, the line from 97 to 104 try to access to labels directory which is not included in train and val directories.

@lacie-life
Copy link

@Uchan1996 are you training TUMTraf-i dataset successfully?

@Uchan1996
Copy link
Author

@lacie-life
No. I've gave up using TUMTraf-I dataset.
I was able to use TUMTraf-V2X dataset for training and evaluation.
However, I found the following problems on TUMTraf-V2X dataset.

  1. There are many bugs in TUMTraf-V2X code. You need to fix them by yourself.

  2. The dataset size is very small as follows:
    train: 800 frames
    val: 100 frames
    test: 100 frames

  3. The data split of train, val and test are composed of the frames sampled from the same sequences.
    I think this data split is not suitable for evaluation of trained models. The trained models just overfit the specific sequences.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants