-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
488 lines (410 loc) · 20.5 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import logging
import numpy as np
import os
import random
import sys
import time
import torch
from collections import defaultdict
from torchvision.datasets import MNIST
from sklearn.neighbors import KernelDensity
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics.cluster import normalized_mutual_info_score, contingency_matrix, completeness_score, homogeneity_score, v_measure_score
from scipy.special import logsumexp
from algorithms.vaes import DiffVAE, ClusteringVAE, DiffVAE_semi_simple, AutoClusteringDiffVAE, ClusteringDiffVAE, IAF_VAE, VAE, IAFDiffVAE, IAF_VAE_semi_simple, VAE_semi_simple, VAE_semi, IAF_VAE_semi, DiffVAE_semi, ClusteringIAFVAE, H_IAF_VAE, H_VAE, VAEDiffusion, DiffVAEFull, DiffVAEBoth, DiffVAEWarmup, DiffVAEWarmup_semi, IWAE
from algorithms.aaes import AAE_vanilla, AAE_semi, AAE_w_cluster_heads
from algorithms.baselines import PCAModel, TSNEModel, UMAPModel
from data.cifar10 import get_cifar10, get_cifar10_labels
from data.mnist import get_mnist, get_mnist_labels
from data.modern_eurasia import get_modern_eurasia, get_modern_eurasia_labels
from data.onekgenome import get_1kgenome, get_1kgenome_labels
from data.toy import get_toy_data
from priors import GridGaussPrior, get_prior
from utils import visualize_latent, visualize_1kgenome, visualize_eurasia, visualize_mnist, mmd_loss, MMDLoss
import hydra
from omegaconf import OmegaConf
logger_ = logging.getLogger()
logger_.level = logging.INFO # important
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s')
stream_handler.setFormatter(formatter)
logger_.addHandler(stream_handler)
log = logging.getLogger(__name__)
def purity_score(y_true, y_pred):
# compute contingency matrix (also called confusion matrix)
mat = contingency_matrix(y_true, y_pred)
# return purity
return np.sum(np.amax(mat, axis=0)) / np.sum(mat)
def fit_and_score(fit_latents, score_latents):
potential_sigmas = np.asarray([0.05, 0.8, 0.1, 0.3, 0.5])
log.info(potential_sigmas)
yo = []
for sigma in potential_sigmas:
kde = KernelDensity(kernel='gaussian', bandwidth=sigma).fit(fit_latents) # atol=0.0005,rtol=0.01
log_scores = kde.score_samples(score_latents)
yo.append(log_scores)
# log.info(yo)
res = logsumexp(np.asarray(yo), 0) - np.log(len(potential_sigmas))
return np.mean(res)
def unsupervised_score(inputs, n_clusters, input='latents'):
if input == 'latents':
latents = inputs
prior = GridGaussPrior(5, n_clusters)
cluster_probs = prior.evaluate_class(torch.from_numpy(latents)).numpy()
elif input == 'cluster_probs':
cluster_probs = inputs
else:
raise NotImplementedError
latent_clusters = np.argmax(cluster_probs, -1)
latent_ids_by_cluster = defaultdict(list)
best_id_by_cluster = {}
for id, latent_cluster in enumerate(latent_clusters):
latent_ids_by_cluster[latent_cluster].append(id)
if (latent_cluster not in best_id_by_cluster) or (cluster_probs[best_id_by_cluster[latent_cluster]][latent_cluster] < cluster_probs[id][latent_cluster]):
best_id_by_cluster[latent_cluster] = id
err_ct = 0
test_dataset = MNIST('.', train=False, download=True)
targets = test_dataset.targets.numpy()
for i in range(n_clusters):
try:
cluster_label = targets[best_id_by_cluster[i]]
err_ct += len(np.nonzero(targets[latent_ids_by_cluster[i]] != cluster_label)[0])
except:
continue
return err_ct / 10000 * 100
def get_data(config):
if config.dataset.name == 'mnist':
train_dataloader = get_mnist(config.model.batch_size, True, flattening=True, labels=False)
test_dataloader = get_mnist(config.model.batch_size, False, flattening=True, labels=False)
elif config.dataset.name == 'mnist_semi':
train_dataloader = get_mnist(config.model.batch_size, True, flattening=True, labels=True, n_labels=config.dataset.n_labels, seed=config.seed)
test_dataloader = get_mnist(config.model.batch_size, False, flattening=True, labels=False)
elif config.dataset.name == 'mnist_toy':
train_dataloader = get_mnist(config.model.batch_size, True, flattening=True, labels=False, toy=True)
test_dataloader = train_dataloader
elif config.dataset.name.startswith('toy'):
train_dataloader = get_toy_data(config.dataset.name, config.model.batch_size, True)
test_dataloader = get_toy_data(config.dataset.name, config.model.batch_size, False)
elif config.dataset.name == 'cifar10':
train_dataloader = get_cifar10(config.model.batch_size, True, flattening=False, labels=False)
test_dataloader = get_cifar10(config.model.batch_size, False, flattening=False, labels=False)
elif config.dataset.name == 'cifar10_semi':
train_dataloader = get_cifar10(config.model.batch_size, True, flattening=False, labels=True, n_labels=config.dataset.n_labels, seed=config.seed)
test_dataloader = get_cifar10(config.model.batch_size, False, flattening=False, labels=False)
elif config.dataset.name == 'modern_eurasia':
train_dataloader = get_modern_eurasia(config.model.batch_size, True, flattening=True, labels=False)
test_dataloader = get_modern_eurasia(config.model.batch_size, False, flattening=True, labels=False)
elif config.dataset.name == 'modern_eurasia_semi':
train_dataloader = get_modern_eurasia(config.model.batch_size, True, flattening=True, labels=True)
test_dataloader = get_modern_eurasia(config.model.batch_size, False, flattening=True, labels=False)
elif config.dataset.name == '1kgenome':
train_dataloader = get_1kgenome(config.model.batch_size, True, flattening=True, labels=False, small_pcs=config.dataset.small)
test_dataloader = get_1kgenome(config.model.batch_size, False, flattening=True, labels=False, small_pcs=config.dataset.small)
elif config.dataset.name == '1kgenome_semi':
train_dataloader = get_1kgenome(config.model.batch_size, True, flattening=True, labels=True)
test_dataloader = get_1kgenome(config.model.batch_size, False, flattening=True, labels=False)
else:
raise NotImplementedError
return train_dataloader, test_dataloader
def get_eval_data(config):
if config.dataset.name in ['mnist', 'mnist_semi']:
train_dataloader = get_mnist(config.model.batch_size, True, flattening=True, labels=False, shuffle=False)
test_dataloader = get_mnist(config.model.batch_size, False, flattening=True, labels=False, shuffle=False)
train_labels = get_mnist_labels(True)
test_labels = get_mnist_labels(False)
elif config.dataset.name == 'mnist_toy':
train_dataloader = get_mnist(config.model.batch_size, True, flattening=True, labels=False, shuffle=False, toy=True)
test_dataloader = train_dataloader
train_labels = get_mnist_labels(True, toy=True)
test_labels = train_labels
elif config.dataset.name in ['cifar10', 'cifar10_semi']:
train_dataloader = get_cifar10(config.model.batch_size, True, flattening=False, labels=False, shuffle=False)
test_dataloader = get_cifar10(config.model.batch_size, False, flattening=False, labels=False, shuffle=False)
train_labels = get_cifar10_labels(True)
test_labels = get_cifar10_labels(False)
elif config.dataset.name in ['modern_eurasia', 'modern_eurasia_semi']:
train_dataloader = get_modern_eurasia(config.model.batch_size, True, flattening=True, labels=False, shuffle=False)
test_dataloader = get_modern_eurasia(config.model.batch_size, False, flattening=True, labels=False, shuffle=False)
train_labels = get_modern_eurasia_labels(True)
test_labels = get_modern_eurasia_labels(False)
elif config.dataset.name in ['1kgenome', '1kgenome_semi']:
train_dataloader = get_1kgenome(config.model.batch_size, True, flattening=True, labels=False, shuffle=False, small_pcs=config.dataset.small)
test_dataloader = get_1kgenome(config.model.batch_size, False, flattening=True, labels=False, shuffle=False, small_pcs=config.dataset.small)
train_labels = get_1kgenome_labels(True)
test_labels = get_1kgenome_labels(False)
else:
raise NotImplementedError
return train_dataloader, test_dataloader, train_labels, test_labels
def metrics_evaluate(model_class):
config = model_class.config
train_dataloader, test_dataloader, train_labels, test_labels = get_eval_data(config)
eval_output = model_class.eval(test_dataloader)
if isinstance(eval_output, tuple):
latents, ys = eval_output
else:
latents = eval_output
with open(os.path.join(config.save_folder, 'latent.npy'), 'wb') as f:
np.save(f, latents)
if config.dataset.name.startswith('1kgenome'):
visualize_1kgenome(latents[:, :2], os.path.join(config.save_folder, f'latent_z_final.png'))
elif config.dataset.name.startswith('modern_eurasia'):
visualize_eurasia(latents[:, :2], os.path.join(config.save_folder, f'latent_z_final.png'))
else:
visualize_latent(latents[:, :2], os.path.join(config.save_folder, f'latent_z_final.png'), targets=test_labels)
res = []
# classification accuracy
train_output = model_class.eval(train_dataloader)
if isinstance(train_output, tuple):
train_latents, _ = train_output
else:
train_latents = train_output
for nn in [20]:
clf = KNeighborsClassifier(n_neighbors=nn).fit(train_latents, train_labels)
sc = clf.score(latents, test_labels)
log.info(f'KNN acc with {nn} neighbors: {sc}')
if nn == 20:
res.append(sc)
# Latents LL
prior = get_prior(config)
prior_samples = prior.sample(10000).cpu().numpy()
e_p_and_q = fit_and_score(latents, prior_samples)
log.info(f'E_p [-log q(x)] = {-e_p_and_q}')
res = res + [-e_p_and_q]
# if config.model.name in ['aae_dim', 'diff_vae_clustering', 'diff_vae_autoclustering', 'clustering_vae', 'pca', 'tsne', 'umap', 'clustering_iaf_vae']:
# predicted_clusters = model_class.eval_label(test_dataloader)
# with open(os.path.join(config.save_folder, 'clusters.npy'), 'wb') as f:
# np.save(f, predicted_clusters)
# # Cluster purity
# cluster_purity = purity_score(test_labels, predicted_clusters)
# log.info(f'Cluster purity = {cluster_purity}')
# res = res + [cluster_purity]
# # Cluster completeness
# cluster_completeness = completeness_score(test_labels, predicted_clusters)
# log.info(f'Cluster completeness = {cluster_completeness}')
# res = res + [cluster_completeness]
# # NMI
# nmi = normalized_mutual_info_score(test_labels, predicted_clusters)
# log.info(f'NMI = {nmi}')
# res = res + [nmi]
prior_samples = model_class.prior.sample(10000)
sampled_imgs = []
model_class.P.eval()
for i in range(0, 10000, model_class.batch_size):
with torch.no_grad():
imgs = model_class.P(prior_samples[i:i+model_class.batch_size])
# sampled_imgs.append(imgs.cpu().numpy())
sampled_imgs.append(imgs.cpu())
# sampled_imgs = np.concatenate(sampled_imgs, 0)
sampled_imgs = torch.cat(sampled_imgs, 0)
test_imgs = []
for x in test_dataloader:
test_imgs.append(x.cpu())
test_imgs = torch.cat(test_imgs, 0)
if len(sampled_imgs.size()) > 2:
sampled_imgs = sampled_imgs.view(10000, -1)
test_imgs = test_imgs.view(10000, -1)
res.append(mmd_loss(test_imgs, sampled_imgs))
log.info(f'MMD now: {res[-1]}')
try:
res.append(model_class.get_elbo(test_dataloader)) # ELBO
except:
res.append(0)
log.info(f'ELBO now: {res[-1]}')
res = [time.time() - model_class.start_time] + res
if os.path.exists(os.path.join(config.save_folder, 'res.npy')):
with open(os.path.join(config.save_folder, 'res.npy'), 'rb') as f:
old_res = np.load(f)
new_res = np.concatenate((old_res, np.asarray(res)[None,:]))
else:
new_res = np.asarray(res)[None,:]
with open(os.path.join(config.save_folder, 'res.npy'), 'wb') as f:
np.save(f, new_res)
def training_routine(save_folder, model_class, epoch, max_epoch):
config = model_class.config
_, test_dataloader, _, test_labels = get_eval_data(config)
if test_dataloader is None or (epoch % 5 != 0 and epoch != max_epoch - 1):
return
if not os.path.exists(save_folder):
os.makedirs(save_folder)
st = time.time()
eval_output = model_class.eval(test_dataloader)
log.info(f'Inference time = {(time.time()- st)/len(test_dataloader)}')
if isinstance(eval_output, tuple):
latents, ys = eval_output
if config.dataset.name.startswith('1kgenome'):
visualize_1kgenome(ys[:, :2], os.path.join(save_folder, f'latent_y_ep{epoch}.png'))
elif config.dataset.name.startswith('modern_eurasia'):
visualize_eurasia(ys[:, :2], os.path.join(save_folder, f'latent_y_ep{epoch}.png'))
else:
visualize_latent(ys[:, :2], os.path.join(save_folder, f'latent_y_ep{epoch}.png'), targets=test_labels)
else:
latents = eval_output
if config.dataset.name.startswith('1kgenome'):
visualize_1kgenome(latents[:, :2], os.path.join(save_folder, f'latent_z_ep{epoch}.png'))
elif config.dataset.name.startswith('modern_eurasia'):
visualize_eurasia(latents[:, :2], os.path.join(save_folder, f'latent_z_ep{epoch}.png'))
else:
visualize_latent(latents[:, :2], os.path.join(save_folder, f'latent_z_ep{epoch}.png'), targets=test_labels)
# if epoch == max_epoch - 1:
metrics_evaluate(model_class)
def get_model(config):
if config.model.name == 'diff_vae':
return DiffVAE(config)
elif config.model.name == 'iaf_diff_vae':
return IAFDiffVAE(config)
elif config.model.name == 'diff_vae_semi_simple':
return DiffVAE_semi_simple(config)
elif config.model.name == 'diff_vae_semi':
return DiffVAE_semi(config)
elif config.model.name == 'diff_vae_autoclustering':
return AutoClusteringDiffVAE(config)
elif config.model.name == 'diff_vae_clustering':
return ClusteringDiffVAE(config)
elif config.model.name == 'clustering_vae':
return ClusteringVAE(config)
elif config.model.name == 'clustering_iaf_vae':
return ClusteringIAFVAE(config)
elif config.model.name == 'aae_vanilla':
return AAE_vanilla(config)
elif config.model.name == 'aae_semi':
return AAE_semi(config)
elif config.model.name == 'aae_dim':
return AAE_w_cluster_heads(config)
elif config.model.name == 'iaf_vae':
return IAF_VAE(config)
elif config.model.name == 'vae':
return VAE(config)
elif config.model.name == 'iwae':
return IWAE(config)
elif config.model.name == 'iaf_vae_semi_simple':
return IAF_VAE_semi_simple(config)
elif config.model.name == 'vae_semi_simple':
return VAE_semi_simple(config)
elif config.model.name == 'iaf_vae_semi':
return IAF_VAE_semi(config)
elif config.model.name == 'vae_semi':
return VAE_semi(config)
elif config.model.name == 'pca':
return PCAModel(config)
elif config.model.name == 'tsne':
return TSNEModel(config)
elif config.model.name == 'umap':
return UMAPModel(config)
elif config.model.name == 'h_vae':
return H_VAE(config)
elif config.model.name == 'h_iaf_vae':
return H_IAF_VAE(config)
elif config.model.name == 'vae_diff':
return VAEDiffusion(config)
elif config.model.name == 'diff_vae_full':
return DiffVAEFull(config)
elif config.model.name == 'diff_vae_both':
return DiffVAEBoth(config)
elif config.model.name == 'diff_vae_warmup':
return DiffVAEWarmup(config)
elif config.model.name == 'diff_vae_warmup_semi':
return DiffVAEWarmup_semi(config)
else:
raise NotImplementedError
def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
@hydra.main(version_base=None, config_path="conf", config_name="config")
def main(config):
if not os.path.exists(config.save_folder):
os.makedirs(config.save_folder)
logger_ = logging.getLogger()
file_handler = logging.FileHandler(os.path.join(config.save_folder, 'run.log'))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger_.addHandler(file_handler)
set_seed(config.seed)
log.info(f'Slurm job id {os.environ["SLURM_JOB_ID"]}')
log.info(f'Loaded config: \n {OmegaConf.to_yaml(config)}')
model = get_model(config)
train_dataloader, test_dataloader = get_data(config)
if config.model.name in ['pca', 'tsne', 'umap']:
metrics_evaluate(model)
else:
if config.get_elbo:
model.load(os.path.join(config.save_folder, 'model.pt'))
res = []
train_dataloader, test_dataloader, train_labels, test_labels = get_eval_data(config)
eval_output = model.eval(test_dataloader)
if isinstance(eval_output, tuple):
latents, ys = eval_output
else:
latents = eval_output
# classification accuracy
train_output = model.eval(train_dataloader)
if isinstance(train_output, tuple):
train_latents, _ = train_output
else:
train_latents = train_output
for nn in [20]:
clf = KNeighborsClassifier(n_neighbors=nn).fit(train_latents, train_labels)
sc = clf.score(latents, test_labels)
log.info(f'KNN acc with {nn} neighbors: {sc}')
if nn == 20:
res.append(sc)
# Latents LL
prior = get_prior(config)
prior_samples = prior.sample(10000).cpu().numpy()
e_p_and_q = fit_and_score(latents, prior_samples)
log.info(f'E_p [-log q(x)] = {-e_p_and_q}')
res = res + [-e_p_and_q]
prior = get_prior(config)
prior_samples = prior.sample(10000)
sampled_imgs = []
model.P.eval()
for i in range(0, 10000, config.model.batch_size):
with torch.no_grad():
imgs = model.P(prior_samples[i:i+config.model.batch_size])
# sampled_imgs.append(imgs.cpu().numpy())
sampled_imgs.append(imgs.cpu())
# if i==0:
# visualize_mnist(imgs.cpu(), os.path.join(config.save_folder, f'look.png'))
# sampled_imgs = np.concatenate(sampled_imgs, 0)
sampled_imgs = torch.cat(sampled_imgs, 0)
test_imgs = []
_, test_dataloader = get_data(config)
ct = 0
for x in test_dataloader:
# for img in x:
# test_imgs.append(imgs.cpu().numpy())
test_imgs.append(x.cpu())
# test_imgs = np.concatenate(test_imgs, 0)
test_imgs = torch.cat(test_imgs, 0)
# indices = np.random.choice(10000, 1000, replace=False)
# elbo = [fit_and_score(sampled_imgs[indices], test_imgs[indices])]
# log.info(f'NLL: {elbo[0]}')
# crit = MMDLoss()
# elbo = [crit(test_imgs[indices], sampled_imgs[indices])]
# log.info(f'MMD RBF: {elbo[0]}')
if len(sampled_imgs.size()) > 2:
sampled_imgs = sampled_imgs.view(10000, -1)
test_imgs = test_imgs.view(10000, -1)
res.append(mmd_loss(test_imgs, sampled_imgs))
log.info(f'MMD: {res[-1]}')
try:
res.append(model.get_elbo(test_dataloader))
log.info(f'ELBO: {res[-1]}')
except:
res.append(0)
new_elbo = np.asarray(res)[None,:]
with open(os.path.join(config.save_folder, 'elbo.npy'), 'wb') as f:
np.save(f, new_elbo)
elif not config.load_model:
model.train(train_dataloader, training_routine=training_routine)
# log.info(f'ELBO: {model.get_elbo(test_dataloader)}')
model.save(os.path.join(config.save_folder, 'model.pt'))
else:
model.load(os.path.join(config.save_folder, 'model.pt'))
metrics_evaluate(model)
log.info(f'ELBO: {model.get_elbo(test_dataloader)}')
if __name__ == '__main__':
main()