|
| 1 | +%% Kathy's filters sandbox |
| 2 | + |
| 3 | +%% Shape a filter |
| 4 | +N = 10000; |
| 5 | +samprate = 10000; |
| 6 | +nfft = 1024; |
| 7 | + |
| 8 | +% make freq vector |
| 9 | +w = (0:nfft/2)'; |
| 10 | + |
| 11 | +% make a PS, reflect about 0 |
| 12 | +sig = 20; |
| 13 | +fw = exp(-w.^2/sig^2); |
| 14 | +fw = [fw;flipud(fw(2:end-1))]; |
| 15 | + |
| 16 | +% plot the power spectrum |
| 17 | +plot([-flipud(w(2:end-1));w],fftshift(fw)); |
| 18 | + |
| 19 | +f = samprate/nfft*[0:nfft/2]; f = [f, fliplr(f(2:end-1))]; |
| 20 | + |
| 21 | +% fft back (try changing phases, check it out) |
| 22 | +c = real(ifft(sqrt(fw))); |
| 23 | +figure; |
| 24 | +plot(c); |
| 25 | + |
| 26 | +%% Shape a filter in the time domain |
| 27 | +samprate = 10000; |
| 28 | +T = 1/samprate; |
| 29 | +N = 10000; |
| 30 | +t = (0:N-1)/samprate; |
| 31 | + |
| 32 | +% filter: Hermite Sharpee, Doupe |
| 33 | +t_0 = .1; |
| 34 | +tau = .006; |
| 35 | +H0 = pi^(-1/4)*exp(-((t-t_0)/tau).^2/2); |
| 36 | +H1 = sqrt(2)*pi^(-1/4)*((t-t_0)/tau).* exp(-((t-t_0)/tau).^2/2); |
| 37 | +H2 = pi^(-1/4)*sqrt(2)*(2*((t-t_0)/tau).^2-1).*exp(-((t-t_0)/tau).^2/2); |
| 38 | + |
| 39 | +nfft = 2^nextpow2(length(t)); |
| 40 | +f = samprate/nfft*[0:nfft/2]; f = [f, fliplr(f(2:end-1))]; |
| 41 | + |
| 42 | +% plot(t,H0,t,H1,t,H2) |
| 43 | +fH0 = fft(H0,nfft); |
| 44 | +fH1 = fft(H1,nfft); |
| 45 | +fH2 = fft(H2,nfft); |
| 46 | + |
| 47 | +impulse = zeros(length(t),1)/samprate; |
| 48 | +impulse(1) = samprate; |
| 49 | + |
| 50 | +% make a butterworth |
| 51 | + |
| 52 | +[B,A] = butter(2,100/samprate); |
| 53 | +b = filter(B,A,impulse); |
| 54 | + |
| 55 | +% freqs(B,A) |
| 56 | +% figure(2) |
| 57 | +% freqz(B,A) |
| 58 | +% figure(2) |
| 59 | +% plot(t,b); |
| 60 | + |
| 61 | +% %% make a bessel |
| 62 | + |
| 63 | +% [B,A] = besself(5,.001/2/pi); |
| 64 | +% bes = filtfilt(B,A,impulse); |
| 65 | +% figure(1) |
| 66 | +% freqs(B,A) |
| 67 | +% figure(2) |
| 68 | +% plot(t,bes); |
| 69 | + |
| 70 | +% make a chebyschev |
| 71 | + |
| 72 | +c = H0; |
| 73 | +c = H1; |
| 74 | +c = H2; |
| 75 | +c = b; |
| 76 | +% c = bes; |
| 77 | + |
| 78 | +fc = fft(c,nfft); |
| 79 | + |
| 80 | +% look at magnitude |
| 81 | + |
| 82 | +figure(1) |
| 83 | +subplot(4,1,1) |
| 84 | +loglog(f,abs(fc)) |
| 85 | +title('mag') |
| 86 | + |
| 87 | +% look at phase delay |
| 88 | +subplot(4,1,2) |
| 89 | +semilogx(f,unwrap(angle(fc))) |
| 90 | +title('phase') |
| 91 | + |
| 92 | +% look at power |
| 93 | +subplot(4,1,3) |
| 94 | +loglog(f,real(fc.*conj(fc))) |
| 95 | +title('power') |
| 96 | + |
| 97 | +% look at filter |
| 98 | +subplot(4,1,4) |
| 99 | +plot(t,c) |
| 100 | +title('power') |
| 101 | + |
| 102 | +c = flipud(c); |
| 103 | + |
| 104 | +%% Make a stimulus envelope |
| 105 | +alpha = 0; |
| 106 | +N = 100000; |
| 107 | +samprate = 10000; |
| 108 | +nfft = 2^nextpow2(N); |
| 109 | +tau = 50; |
| 110 | + |
| 111 | +% choose a white noise stimulus |
| 112 | +stim = powernoise(alpha, N, 'randpower', 'normalize'); |
| 113 | +stim = stim-mean(stim); |
| 114 | + |
| 115 | +% filter, change in frequency domain |
| 116 | +fstim_pre = fft(stim,nfft); |
| 117 | +[pstim_pre, f_pre] = pwelch(stim,nfft/2,nfft/4,nfft,samprate); |
| 118 | + |
| 119 | +f = samprate/nfft*[0:nfft/2]; f = [f, fliplr(f(2:end-1))]'; |
| 120 | +fexp = exp(-f/(tau/2)); |
| 121 | + |
| 122 | +fstim_post = fstim_pre.*fexp; |
| 123 | +env = ifft(fstim_post); |
| 124 | +env = env(1:N); |
| 125 | +[pstim_post, f_post] = pwelch(env,nfft/2,nfft/4,nfft,samprate); |
| 126 | + |
| 127 | +% low pass |
| 128 | + |
| 129 | +% gaussian band pass |
| 130 | + |
| 131 | +% high pass |
| 132 | + |
| 133 | +% pink |
| 134 | + |
| 135 | +figure(1) |
| 136 | +subplot(4,1,1); |
| 137 | +plot(stim) |
| 138 | + |
| 139 | +subplot(4,1,2); |
| 140 | +loglog(f,fstim_pre.*conj(fstim_pre),'b'); hold on; |
| 141 | +loglog(f,fstim_post.*conj(fstim_post),'r'); |
| 142 | + |
| 143 | +subplot(4,1,3); |
| 144 | +loglog(f_pre,pstim_pre,'b-'); hold on |
| 145 | +loglog(f_post,pstim_post,'r-'); hold on |
| 146 | + |
| 147 | +subplot(4,1,4); |
| 148 | +plot(env); |
| 149 | + |
| 150 | +env_pre = env/std(env); |
| 151 | + |
| 152 | + |
| 153 | +% Make a stimulus |
| 154 | + |
| 155 | +mu = 1; |
| 156 | +sig = 1; |
| 157 | +alpha = 0; |
| 158 | + |
| 159 | +env = 10.^(mu + sig*env_pre); |
| 160 | + |
| 161 | +% choose a white noise carrier |
| 162 | +stim = powernoise(alpha, N, 'randpower', 'normalize'); |
| 163 | +stim = stim-mean(stim); |
| 164 | + |
| 165 | +% choose a pure tone carrier |
| 166 | +% t = (1:N)'/samprate; |
| 167 | +% f = 1000; |
| 168 | +% stim = sin(f*t + 2*pi*(rand(1)-.5)); |
| 169 | +% stim = stim-mean(stim); |
| 170 | + |
| 171 | +stim = env.*stim; |
| 172 | + |
| 173 | +figure(1) |
| 174 | +plot(env,'r'); hold on |
| 175 | +plot(stim); hold off |
| 176 | + |
| 177 | +%sound(stim) |
| 178 | + |
| 179 | +%% generate neural response |
| 180 | + |
| 181 | +gain = 1e-3; |
| 182 | + |
| 183 | +[r,tr] = predict(gain*c,stim,0,samprate); |
| 184 | + |
| 185 | +% hold on; |
| 186 | +% plot(tr,r); |
| 187 | +% plot(ts,scale*stim/max(stim),'r'); |
| 188 | +% axis([0 max(ts) 0 max(r)]); |
| 189 | + |
| 190 | +% generate spikes |
| 191 | +s = poissonSpikes(r,samprate,1,0); |
| 192 | + |
| 193 | +acausal_short = 20; |
| 194 | +causal_short = -100; |
| 195 | +c_sta = [c(end+causal_short*samprate/1000:end);c(1:acausal_short*samprate/1000)]; |
| 196 | +norm_c_sta = c_sta/sqrt(c_sta'*c_sta); |
| 197 | + |
| 198 | +figure(1), clf |
| 199 | +subplot(3,1,1); |
| 200 | +plot(stim); |
| 201 | + |
| 202 | +% [S,F,T,P] = spectrogram(stim,256,250,256,samprate); |
| 203 | +% |
| 204 | +% subplot(3,1,2); |
| 205 | +% colormap(pmkmp(256,'CubicL')) |
| 206 | +% surf(T,F,10*log10(P),'edgecolor','none'); axis tight; |
| 207 | +% %surf(T,F,(P),'edgecolor','none'); axis tight; |
| 208 | +% % colorbar |
| 209 | +% view(0,90); |
| 210 | +% title('White Noise'); |
| 211 | +% xlabel('Time (Seconds)'); ylabel('Hz'); |
| 212 | + |
| 213 | +subplot(3,1,3); |
| 214 | +plotMatrixRaster(s); |
| 215 | + |
| 216 | + |
| 217 | +%% Predict filter |
| 218 | +acausal = 20; |
| 219 | +causal = -(length(stim)/samprate*1000-20); |
| 220 | + |
| 221 | +filt = zeros(-causal*samprate/1000+acausal*samprate/1000+1,size(s,2)); |
| 222 | +dfilt = filt; |
| 223 | +for col = 1:size(s,2); |
| 224 | + [filt(:,col),t] = quickfftxcorr(s(:,col),stim,samprate,causal,acausal); |
| 225 | + |
| 226 | +end |
| 227 | + |
| 228 | +filt_bar = mean(filt,2); |
| 229 | +norm_filt_bar = filt_bar/sqrt(filt_bar'*filt_bar); |
| 230 | + |
| 231 | +%% decorrelate with stimulus |
| 232 | + |
| 233 | +% set up the filters |
| 234 | + |
| 235 | +nfft = 2^nextpow2(length(norm_filt_bar)); |
| 236 | +f = samprate/nfft*[0:nfft/2]; f = [f, fliplr(f(2:end-1))]'; |
| 237 | + |
| 238 | +f_filt = fft(norm_filt_bar,nfft); |
| 239 | +f_stim = fft(stim,nfft); |
| 240 | + |
| 241 | +dffilt = f_filt./(f_stim.*conj(f_stim)); |
| 242 | +dfilt = ifft(dffilt); |
| 243 | + |
| 244 | +% smooth the filter exponentially at really high frequencies |
| 245 | + |
| 246 | +tau = 1000; |
| 247 | +f_cut = 1.2e2; |
| 248 | + |
| 249 | +f = samprate/nfft*[0:nfft/2]; f = [f, fliplr(f(2:end-1))]'; |
| 250 | +fexp = ones(size(f)); |
| 251 | +fexp(f>f_cut) = exp(-(f(f>f_cut)-f_cut)/(tau/2)); |
| 252 | + |
| 253 | +fexp_filt = fft(norm_filt_bar,nfft).*fexp; |
| 254 | +fexp_dfilt = dffilt.*fexp; |
| 255 | +exp_dfilt = ifft(fexp_dfilt); |
| 256 | + |
| 257 | +norm_filt_bar = norm_filt_bar(end-length(norm_c_sta)+1:end); |
| 258 | +dfilt = dfilt(end-length(norm_c_sta)+1:end); |
| 259 | +exp_dfilt = exp_dfilt(end-length(norm_c_sta)+1:end); |
| 260 | + |
| 261 | +figure(); |
| 262 | +loglog(f,f_filt.*conj(f_filt)); hold on |
| 263 | +loglog(f,f_stim.*conj(f_stim),'k'); |
| 264 | +loglog(f,dffilt.*conj(dffilt),'r'); |
| 265 | + |
| 266 | + |
| 267 | +%% plot the filtered filters and stimuli |
| 268 | +figure(2), clf |
| 269 | +subplot(2,1,1); |
| 270 | +% plot(filt,'k'); hold on |
| 271 | +% plot(mean(filt,2),'r'); |
| 272 | + |
| 273 | +figure(2) |
| 274 | +subplot(2,1,2); |
| 275 | +plot(mean(norm_filt_bar,2),'r'); hold on |
| 276 | +plot(norm_c_sta,'g') |
| 277 | +plot(exp_dfilt,'b'); |
| 278 | + |
| 279 | +figure(3) |
| 280 | +subplot(1,1,1); |
| 281 | +loglog(f,f_filt.*conj(f_filt)); hold on |
| 282 | +loglog(f,f_stim.*conj(f_stim),'k'); |
| 283 | +loglog(f,dffilt.*conj(dffilt),'r'); |
| 284 | +loglog(f,fexp.*conj(fexp),'b--');hold on |
| 285 | +loglog(f,fexp_dfilt.*conj(fexp_dfilt),'b'); |
| 286 | + |
| 287 | +nfft2 = 2^nextpow2(length(norm_c_sta)); |
| 288 | +f2 = samprate/nfft2*[0:nfft2/2]; f2 = [f2, fliplr(f2(2:end-1))]'; |
| 289 | + |
| 290 | +loglog(f2,fft(norm_c_sta,nfft2).*conj(fft(norm_c_sta,nfft2)),'g'); |
| 291 | + |
0 commit comments